numcodecs_random_projection/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
//! [![CI Status]][workflow] [![MSRV]][repo] [![Latest Version]][crates.io] [![Rust Doc Crate]][docs.rs] [![Rust Doc Main]][docs]
//!
//! [CI Status]: https://img.shields.io/github/actions/workflow/status/juntyr/numcodecs-rs/ci.yml?branch=main
//! [workflow]: https://github.com/juntyr/numcodecs-rs/actions/workflows/ci.yml?query=branch%3Amain
//!
//! [MSRV]: https://img.shields.io/badge/MSRV-1.81.0-blue
//! [repo]: https://github.com/juntyr/numcodecs-rs
//!
//! [Latest Version]: https://img.shields.io/crates/v/numcodecs-random-projection
//! [crates.io]: https://crates.io/crates/numcodecs-random-projection
//!
//! [Rust Doc Crate]: https://img.shields.io/docsrs/numcodecs-random-projection
//! [docs.rs]: https://docs.rs/numcodecs-random-projection/
//!
//! [Rust Doc Main]: https://img.shields.io/badge/docs-main-blue
//! [docs]: https://juntyr.github.io/numcodecs-rs/numcodecs_random_projection
//!
//! Random Projection codec implementation for the [`numcodecs`] API.

use std::{borrow::Cow, num::NonZeroUsize, ops::AddAssign};

use ndarray::{s, Array, ArrayBase, ArrayViewMut, Data, Dimension, Ix2, ShapeError, Zip};
use num_traits::{ConstOne, ConstZero, Float, FloatConst};
use numcodecs::{
    AnyArray, AnyArrayAssignError, AnyArrayDType, AnyArrayView, AnyArrayViewMut, AnyCowArray,
    Codec, StaticCodec, StaticCodecConfig,
};
use schemars::{json_schema, JsonSchema, Schema, SchemaGenerator};
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use thiserror::Error;

#[cfg(test)]
use ::serde_json as _;

/// Codec that uses random projections to reduce the dimensionality of high-
/// dimensional data to compress it.
///
/// A two-dimensional array of shape `N x D` is encoded as n array of shape
/// `N x K`, where `K` is either set explicitly or chosen using the the Johnson-
/// Lindenstrauss lemma. For `K` to be smaller than `D`, `D` must be quite
/// large. Therefore, this codec should only applied on large datasets as it
/// otherwise significantly inflates the data size instead of reducing it.
///
/// Choosing a lower distortion rate `epsilon` will improve the quality of the
/// lossy compression, i.e. reduce the compression error, at the cost of
/// increasing `K`.
///
/// This codec only supports finite floating point data.
#[derive(Clone, Serialize, Deserialize, JsonSchema)]
// FIXME: #[serde(deny_unknown_fields)]
pub struct RandomProjectionCodec {
    /// Seed for generating the random projection matrix
    pub seed: u64,
    /// Method with which the reduced dimensionality `K` is selected
    #[serde(flatten)]
    pub reduction: RandomProjectionReduction,
    /// Projection kind that is used to generate the random projection matrix
    #[serde(flatten)]
    pub projection: RandomProjectionKind,
}

/// Method with which the reduced dimensionality `K` is selected
#[derive(Clone, Serialize, Deserialize, JsonSchema)]
// FIXME: #[serde(deny_unknown_fields)]
#[serde(tag = "reduction", rename_all = "kebab-case")]
pub enum RandomProjectionReduction {
    /// The reduced dimensionality `K` is derived from `epsilon`, as defined by
    /// the Johnson-Lindenstrauss lemma.
    JohnsonLindenstrauss {
        /// Maximum distortion rate
        epsilon: OpenClosedUnit<f64>,
    },
    /// The reduced dimensionality `K`, to which the data is projected, is given
    /// explicitly.
    Explicit {
        /// Reduced dimensionality
        k: NonZeroUsize,
    },
}

/// Projection kind that is used to generate the random projection matrix
#[derive(Clone, Serialize, Deserialize, JsonSchema)]
// FIXME: #[serde(deny_unknown_fields)]
#[serde(tag = "projection", rename_all = "kebab-case")]
pub enum RandomProjectionKind {
    /// The random projection matrix is dense and its components are sampled
    /// from `N(0, 1/k)`
    Gaussian,
    /// The random projection matrix is sparse where only `density`% of entries
    /// are non-zero.
    ///
    /// The matrix's components are sampled from
    ///
    /// - `-sqrt(1 / (k * density))` with probability `density/2`
    /// - `0` with probability `1-density`
    /// - `+sqrt(1 / (k * density))` with probability `density/2`
    Sparse {
        /// The `density` of the sparse projection matrix.
        ///
        /// Setting `density` to `Some(1.0/3.0)` reproduces the settings by
        /// Achlioptas [^1]. If `density` is `None`, it is set to `1/sqrt(d)`,
        /// the minimum density as recommended by Li et al [^2].
        ///
        ///
        /// [^1]: Achlioptas, D. (2003). Database-friendly random projections:
        ///       Johnson-Lindenstrauss with binary coins. *Journal of Computer
        ///       and System Sciences*, 66(4), 671-687. Available from:
        ///       [doi:10.1016/S0022-0000(03)00025-4](https://doi.org/10.1016/S0022-0000(03)00025-4).
        ///
        /// [^2]: Li, P., Hastie, T. J., and Church, K. W. (2006). Very sparse
        ///       random projections. In *Proceedings of the 12th ACM SIGKDD
        ///       international conference on Knowledge discovery and data
        ///       mining (KDD '06)*. Association for Computing Machinery, New
        ///       York, NY, USA, 287–296. Available from:
        ///       [doi:10.1145/1150402.1150436](https://doi.org/10.1145/1150402.1150436).
        #[serde(default, skip_serializing_if = "Option::is_none")]
        density: Option<OpenClosedUnit<f64>>,
    },
}

impl Codec for RandomProjectionCodec {
    type Error = RandomProjectionCodecError;

    fn encode(&self, data: AnyCowArray) -> Result<AnyArray, Self::Error> {
        match data {
            AnyCowArray::F32(data) => Ok(AnyArray::F32(
                project_with_projection(data, self.seed, &self.reduction, &self.projection)?
                    .into_dyn(),
            )),
            AnyCowArray::F64(data) => Ok(AnyArray::F64(
                project_with_projection(data, self.seed, &self.reduction, &self.projection)?
                    .into_dyn(),
            )),
            encoded => Err(RandomProjectionCodecError::UnsupportedDtype(
                encoded.dtype(),
            )),
        }
    }

    fn decode(&self, encoded: AnyCowArray) -> Result<AnyArray, Self::Error> {
        match encoded {
            AnyCowArray::F32(encoded) => Ok(AnyArray::F32(
                reconstruct_with_projection(encoded, self.seed, &self.projection)?.into_dyn(),
            )),
            AnyCowArray::F64(encoded) => Ok(AnyArray::F64(
                reconstruct_with_projection(encoded, self.seed, &self.projection)?.into_dyn(),
            )),
            encoded => Err(RandomProjectionCodecError::UnsupportedDtype(
                encoded.dtype(),
            )),
        }
    }

    fn decode_into(
        &self,
        encoded: AnyArrayView,
        decoded: AnyArrayViewMut,
    ) -> Result<(), Self::Error> {
        match (encoded, decoded) {
            (AnyArrayView::F32(encoded), AnyArrayViewMut::F32(decoded)) => {
                reconstruct_into_with_projection(encoded, decoded, self.seed, &self.projection)
            }
            (AnyArrayView::F64(encoded), AnyArrayViewMut::F64(decoded)) => {
                reconstruct_into_with_projection(encoded, decoded, self.seed, &self.projection)
            }
            (encoded @ (AnyArrayView::F32(_) | AnyArrayView::F64(_)), decoded) => {
                Err(RandomProjectionCodecError::MismatchedDecodeIntoArray {
                    source: AnyArrayAssignError::DTypeMismatch {
                        src: encoded.dtype(),
                        dst: decoded.dtype(),
                    },
                })
            }
            (encoded, _decoded) => Err(RandomProjectionCodecError::UnsupportedDtype(
                encoded.dtype(),
            )),
        }
    }
}

impl StaticCodec for RandomProjectionCodec {
    const CODEC_ID: &'static str = "random-projection";

    type Config<'de> = Self;

    fn from_config(config: Self::Config<'_>) -> Self {
        config
    }

    fn get_config(&self) -> StaticCodecConfig<Self> {
        StaticCodecConfig::from(self)
    }
}

#[derive(Debug, Error)]
/// Errors that may occur when applying the [`RandomProjectionCodec`].
pub enum RandomProjectionCodecError {
    /// [`RandomProjectionCodec`] does not support the dtype
    #[error("RandomProjection does not support the dtype {0}")]
    UnsupportedDtype(AnyArrayDType),
    /// [`RandomProjectionCodec`] does not support the dtype
    #[error("RandomProjection only supports matrix / 2d-shaped arrays")]
    NonMatrixData {
        /// The source of the error
        #[from]
        source: ShapeError,
    },
    /// [`RandomProjectionCodec`] does not support non-finite (infinite or NaN)
    /// floating point data
    #[error("RandomProjection does not support non-finite (infinite or NaN) floating point data")]
    NonFiniteData,
    /// [`RandomProjectionCodec`] cannot encode or decode from an array with `N`
    /// samples to an array with a different number of samples
    #[error("RandomProjection cannot encode or decode from an array with {input} samples to an array with {output} samples")]
    NumberOfSamplesMismatch {
        /// Number of samples `N` in the input array
        input: usize,
        /// Number of samples `N` in the output array
        output: usize,
    },
    /// [`RandomProjectionCodec`] cannot decode from an array with zero
    /// dimensionality `K`
    #[error("RandomProjection cannot decode from an array with zero dimensionality `K`")]
    ProjectedArrayZeroComponents,
    /// [`RandomProjectionCodec`] cannot decode from an array with corrupted
    /// dimensionality metadata
    #[error("RandomProjection cannot decode from an array with corrupted dimensionality metadata")]
    CorruptedNumberOfComponents,
    /// [`RandomProjectionCodec`] cannot decode into an array with `D` features
    /// that differs from the `D` stored in the encoded metadata
    #[error("RandomProjection cannot decode into an array with {output} features that differs from the {metadata} features stored in the encoded metadata")]
    NumberOfFeaturesMismatch {
        /// Number of features `D` in the encoded array metadata
        metadata: usize,
        /// Number of features `D` in the decoded output array
        output: usize,
    },
    /// [`RandomProjectionCodec`] cannot decode into the provided array
    #[error("RandomProjection cannot decode into the provided array")]
    MismatchedDecodeIntoArray {
        /// The source of the error
        #[from]
        source: AnyArrayAssignError,
    },
}

/// Applies random projection to the input `data` with the given `seed`,
/// `reduction` method, and `projection` kind and returns the resulting
/// projected array.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonMatrixData`] if the input `data` is not
///   a two-dimensional matrix
/// - [`RandomProjectionCodecError::NonFiniteData`] if the input `data` or
///   projected output contains non-finite data
pub fn project_with_projection<T: FloatExt, S: Data<Elem = T>, D: Dimension>(
    data: ArrayBase<S, D>,
    seed: u64,
    reduction: &RandomProjectionReduction,
    projection: &RandomProjectionKind,
) -> Result<Array<T, Ix2>, RandomProjectionCodecError> {
    let data = data
        .into_dimensionality()
        .map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;

    let (n, d) = data.dim();

    let k = match reduction {
        RandomProjectionReduction::JohnsonLindenstrauss { epsilon } => {
            johnson_lindenstrauss_min_k(n, *epsilon)
        }
        RandomProjectionReduction::Explicit { k } => k.get(),
    };

    let mut projected = Array::<T, Ix2>::from_elem((n, k + 1), T::ZERO);

    // stash the number of features `d` in an extra column
    // this is quite inefficient but works for now
    for p in projected.slice_mut(s!(.., k)) {
        *p = T::from_usize(d);
    }

    match projection {
        RandomProjectionKind::Gaussian => project_into(
            data,
            projected.slice_mut(s!(.., ..k)),
            |x, y| gaussian_project(x, y, seed),
            gaussian_normaliser(k),
        ),
        RandomProjectionKind::Sparse { density } => {
            let density = density_or_ping_li_minimum(*density, d);
            project_into(
                data,
                projected.slice_mut(s!(.., ..k)),
                |x, y| sparse_project(x, y, density, seed),
                sparse_normaliser(k, density),
            )
        }
    }?;

    Ok(projected)
}

#[allow(clippy::needless_pass_by_value)]
/// Applies random projection to the input `data` and outputs into the
/// `projected` array.
///
/// The random projection matrix is defined by the `projection` function
/// `(i, j) -> P[i, j]` and a globally applied `normalizer` factor.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NumberOfSamplesMismatch`] if the input
///   `data`'s number of samples doesn't match the `projected` array's number
///   of samples
/// - [`RandomProjectionCodecError::NonFiniteData`] if the input `data` or
///   projected output contains non-finite data
pub fn project_into<T: FloatExt, S: Data<Elem = T>>(
    data: ArrayBase<S, Ix2>,
    mut projected: ArrayViewMut<T, Ix2>,
    projection: impl Fn(usize, usize) -> T,
    normalizer: T,
) -> Result<(), RandomProjectionCodecError> {
    let (n, d) = data.dim();
    let (n2, _k) = projected.dim();

    if n2 != n {
        return Err(RandomProjectionCodecError::NumberOfSamplesMismatch {
            input: n,
            output: n2,
        });
    }

    let mut skip_projection_column = Vec::with_capacity(d);

    for (j, projected_j) in projected.columns_mut().into_iter().enumerate() {
        // materialize one column of the projection matrix
        //   i.e. instead of A x B = C, compute A x [bs] = [cs].T
        // the column is stored in a sparse representation [(l, p)]
        //   where l is the index of the non-zero entry p
        skip_projection_column.clear();
        for l in 0..d {
            let p = projection(l, j);
            if !p.is_zero() {
                skip_projection_column.push((l, p));
            }
        }

        for (data_i, projected_ij) in data.rows().into_iter().zip(projected_j) {
            let mut acc = T::ZERO;

            #[allow(clippy::indexing_slicing)]
            // data_i is of shape (d) and all l's are in 0..d
            for &(l, p) in &skip_projection_column {
                acc += data_i[l] * p;
            }

            *projected_ij = acc * normalizer;
        }
    }

    if !Zip::from(projected).all(|x| x.is_finite()) {
        return Err(RandomProjectionCodecError::NonFiniteData);
    }

    Ok(())
}

/// Applies the (approximate) inverse of random projection to the `projected`
/// array.
///
/// The input data is reconstructed with the given `seed` and `projection`
/// kind and returns the resulting reconstructed array.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonMatrixData`] if the `projected` array is
///   not a two-dimensional matrix
/// - [`RandomProjectionCodecError::ProjectedArrayZeroComponents`] if the
///   `projected` array is of shape `(n, 0)`
/// - [`RandomProjectionCodecError::CorruptedNumberOfComponents`] if the
///   `projected` array's dimensionality metadata is corrupted
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
///   the reconstructed output contains non-finite data
pub fn reconstruct_with_projection<T: FloatExt, S: Data<Elem = T>, D: Dimension>(
    projected: ArrayBase<S, D>,
    seed: u64,
    projection: &RandomProjectionKind,
) -> Result<Array<T, Ix2>, RandomProjectionCodecError> {
    let projected = projected
        .into_dimensionality()
        .map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;

    if projected.is_empty() {
        return Ok(projected.to_owned());
    }

    let (_n, k): (usize, usize) = projected.dim();
    let Some(k) = k.checked_sub(1) else {
        return Err(RandomProjectionCodecError::ProjectedArrayZeroComponents);
    };

    // extract the number of features `d` from the extra column and check that
    //  it has been preserved consistently across the column
    let ds = projected.slice(s!(.., k));
    let Ok(Some(d)) = ds.fold(Ok(None), |acc, d| match acc {
        Ok(None) => Ok(Some(d.into_usize())),
        Ok(Some(d2)) if d2 == d.into_usize() => Ok(Some(d2)),
        _ => Err(()),
    }) else {
        return Err(RandomProjectionCodecError::CorruptedNumberOfComponents);
    };

    // extract the projected data, excluding the metadata column
    let projected = projected.slice_move(s!(.., ..k));

    match projection {
        RandomProjectionKind::Gaussian => reconstruct(
            projected,
            d,
            |x, y| gaussian_project(x, y, seed),
            gaussian_normaliser(k),
        ),
        RandomProjectionKind::Sparse { density } => {
            let density = density_or_ping_li_minimum(*density, d);
            reconstruct(
                projected,
                d,
                |x, y| sparse_project(x, y, density, seed),
                sparse_normaliser(k, density),
            )
        }
    }
}

#[allow(clippy::needless_pass_by_value)]
/// Applies the (approximate) inverse of random projection to the `projected`
/// array to reconstruct the input data with dimensionality `d` and returns the
/// resulting reconstructed array.
///
/// The random projection matrix is defined by the `projection` function
/// `(i, j) -> P[i, j]` and a globally applied `normalizer` factor.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
///   the reconstructed output contains non-finite data
pub fn reconstruct<T: FloatExt, S: Data<Elem = T>>(
    projected: ArrayBase<S, Ix2>,
    d: usize,
    projection: impl Fn(usize, usize) -> T,
    normalizer: T,
) -> Result<Array<T, Ix2>, RandomProjectionCodecError> {
    if projected.is_empty() {
        return Ok(projected.to_owned());
    }

    let (n, k) = projected.dim();

    let mut reconstructed = Array::<T, Ix2>::from_elem((n, d), T::ZERO);

    let mut skip_projection_row = Vec::with_capacity(k);

    for (l, reconstructed_l) in reconstructed.columns_mut().into_iter().enumerate() {
        // materialize one row of the projection matrix transpose
        // i.e. instead of A x B = C, compute A x [bs] = [cs].T
        // the row is stored in a sparse representation [(j, p)]
        //   where j is the index of the non-zero entry p
        skip_projection_row.clear();
        for j in 0..k {
            let p = projection(l, j);
            if !p.is_zero() {
                skip_projection_row.push((j, p));
            }
        }

        for (projected_i, reconstructed_il) in projected.rows().into_iter().zip(reconstructed_l) {
            let mut acc = T::ZERO;

            #[allow(clippy::indexing_slicing)]
            // projected_i is of shape (k) and all j's are in 0..k
            for &(j, p) in &skip_projection_row {
                acc += projected_i[j] * p;
            }

            *reconstructed_il = acc * normalizer;
        }
    }

    if !Zip::from(&reconstructed).all(|x| x.is_finite()) {
        return Err(RandomProjectionCodecError::NonFiniteData);
    }

    Ok(reconstructed)
}

/// Applies the (approximate) inverse of random projection to the `projected`
/// array to reconstruct the input data with the given `seed` and `projection`
/// kind and outputs into the `reconstructed` array.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonMatrixData`] if the `projected` and
///   `reconstructed` arrays are not two-dimensional matrices
/// - [`RandomProjectionCodecError::NumberOfSamplesMismatch`] if the number of
///   samples `N` of the `projected` array don't match the number of samples of
///   the `reconstructed` array
/// - [`RandomProjectionCodecError::ProjectedArrayZeroComponents`] if the
///   `projected` array is of shape `(n, 0)`
/// - [`RandomProjectionCodecError::CorruptedNumberOfComponents`] if the
///   `projected` array's dimensionality metadata is corrupted
/// - [`RandomProjectionCodecError::NumberOfFeaturesMismatch`] if the
///   `reconstructed` array's dimensionality `D` does not match the `projected`
///   array's dimensionality metadata
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
///   the reconstructed output contains non-finite data
pub fn reconstruct_into_with_projection<T: FloatExt, S: Data<Elem = T>, D: Dimension>(
    projected: ArrayBase<S, D>,
    reconstructed: ArrayViewMut<T, D>,
    seed: u64,
    projection: &RandomProjectionKind,
) -> Result<(), RandomProjectionCodecError> {
    let projected: ArrayBase<S, Ix2> = projected
        .into_dimensionality()
        .map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;
    let reconstructed: ArrayViewMut<T, Ix2> = reconstructed
        .into_dimensionality()
        .map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;

    let (n, k) = projected.dim();
    let (n2, d2) = reconstructed.dim();

    if n2 != n {
        return Err(RandomProjectionCodecError::NumberOfSamplesMismatch {
            input: n,
            output: n2,
        });
    }

    let Some(k) = k.checked_sub(1) else {
        return Err(RandomProjectionCodecError::ProjectedArrayZeroComponents);
    };

    // extract the number of features `d` from the extra column and check that
    //  it has been preserved consistently across the column
    let ds = projected.slice(s!(.., k));
    let Ok(Some(d)) = ds.fold(Ok(None), |acc, d| match acc {
        Ok(None) => Ok(Some(d.into_usize())),
        Ok(Some(d2)) if d2 == d.into_usize() => Ok(Some(d2)),
        _ => Err(()),
    }) else {
        return Err(RandomProjectionCodecError::CorruptedNumberOfComponents);
    };

    if d2 != d {
        return Err(RandomProjectionCodecError::NumberOfFeaturesMismatch {
            metadata: d,
            output: d2,
        });
    }

    // extract the projected data, excluding the metadata column
    let projected = projected.slice_move(s!(.., ..k));

    match projection {
        RandomProjectionKind::Gaussian => reconstruct_into(
            projected,
            reconstructed,
            |x, y| gaussian_project(x, y, seed),
            gaussian_normaliser(k),
        ),
        RandomProjectionKind::Sparse { density } => {
            let density = density_or_ping_li_minimum(*density, d);
            reconstruct_into(
                projected,
                reconstructed,
                |x, y| sparse_project(x, y, density, seed),
                sparse_normaliser(k, density),
            )
        }
    }
}

#[allow(clippy::needless_pass_by_value)]
/// Applies the (approximate) inverse of random projection to the `projected`
/// array to reconstruct the input data outputs into the `reconstructed` array.
///
/// The random projection matrix is defined by the `projection` function
/// `(i, j) -> P[i, j]` and a globally applied `normalizer` factor.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NumberOfSamplesMismatch`] if the number of
///   samples `N` of the `projected` array don't match the number of samples of
///   the `reconstructed` array
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
///   the reconstructed output contains non-finite data
pub fn reconstruct_into<T: FloatExt, S: Data<Elem = T>>(
    projected: ArrayBase<S, Ix2>,
    mut reconstructed: ArrayViewMut<T, Ix2>,
    projection: impl Fn(usize, usize) -> T,
    normalizer: T,
) -> Result<(), RandomProjectionCodecError> {
    let (n, k) = projected.dim();
    let (n2, _d) = reconstructed.dim();

    if n2 != n {
        return Err(RandomProjectionCodecError::NumberOfSamplesMismatch {
            input: n,
            output: n2,
        });
    }

    let mut skip_projection_row = Vec::with_capacity(k);

    for (l, reconstructed_l) in reconstructed.columns_mut().into_iter().enumerate() {
        // materialize one row of the projection matrix transpose
        // i.e. instead of A x B = C, compute A x [bs] = [cs].T
        // the row is stored in a sparse representation [(j, p)]
        //   where j is the index of the non-zero entry p
        skip_projection_row.clear();
        for j in 0..k {
            let p = projection(l, j);
            if !p.is_zero() {
                skip_projection_row.push((j, p));
            }
        }

        for (projected_i, reconstructed_il) in projected.rows().into_iter().zip(reconstructed_l) {
            let mut acc = T::ZERO;

            #[allow(clippy::indexing_slicing)]
            // projected_i is of shape (k) and all j's are in 0..k
            for &(j, p) in &skip_projection_row {
                acc += projected_i[j] * p;
            }

            *reconstructed_il = acc * normalizer;
        }
    }

    if !Zip::from(reconstructed).all(|x| x.is_finite()) {
        return Err(RandomProjectionCodecError::NonFiniteData);
    }

    Ok(())
}

/// Find a 'safe' number of components `K` to randomly project to.
///
/// The minimum number of components to guarantee the eps-embedding is
/// given by `K >= 4 log(N) / (eps^2 / 2 - eps^3 / 3)`.
///
/// The implementation is adapted from [`sklearn`]'s.
///
/// [`sklearn`]: https://github.com/scikit-learn/scikit-learn/blob/3b39d7cb957ab781744b346c1848be9db3f4e221/sklearn/random_projection.py#L56-L142
#[must_use]
pub fn johnson_lindenstrauss_min_k(
    n_samples: usize,
    OpenClosedUnit(epsilon): OpenClosedUnit<f64>,
) -> usize {
    #[allow(clippy::suboptimal_flops)]
    let denominator = (epsilon * epsilon * 0.5) - (epsilon * epsilon * epsilon / 3.0);
    #[allow(clippy::cast_precision_loss)]
    let min_k = (n_samples as f64).ln() * 4.0 / denominator;
    #[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
    let min_k = min_k as usize;
    min_k
}

/// Extract the provided `density` if it is `Some(_)`, or compute the minimum
/// required density `1/sqrt(d)` as recommended by Li et al [^3].
///
/// [^3]: Li, P., Hastie, T. J., and Church, K. W. (2006). Very sparse
///       random projections. In *Proceedings of the 12th ACM SIGKDD
///       international conference on Knowledge discovery and data
///       mining (KDD '06)*. Association for Computing Machinery, New
///       York, NY, USA, 287–296. Available from:
///       [doi:10.1145/1150402.1150436](https://doi.org/10.1145/1150402.1150436).
#[must_use]
pub fn density_or_ping_li_minimum<T: FloatExt>(
    density: Option<OpenClosedUnit<f64>>,
    d: usize,
) -> T {
    match density {
        Some(OpenClosedUnit(density)) => T::from_f64(density),
        None => T::from_usize(d).sqrt().recip(),
    }
}

/// Sample from `N(0, 1)` at the coordinate `(x, y)` with the random `seed`
fn gaussian_project<T: FloatExt>(x: usize, y: usize, seed: u64) -> T {
    let (ClosedOpenUnit(u0), OpenClosedUnit(u1)) = T::u01x2(hash_matrix_index(x, y, seed));

    let theta = -T::TAU() * u0;
    let r = (-T::TWO * u1.ln()).sqrt();

    r * theta.sin()
}

fn gaussian_normaliser<T: FloatExt>(k: usize) -> T {
    T::from_usize(k).sqrt().recip()
}

/// Sample from `{ -1, 0, +1 }` with probabilities
/// `{ density/2, 1-density, density/2 }` at the coordinate `(x, y)` with the
/// random `seed`
fn sparse_project<T: FloatExt>(x: usize, y: usize, density: T, seed: u64) -> T {
    let (ClosedOpenUnit(u0), _u1) = T::u01x2(hash_matrix_index(x, y, seed));

    if u0 < (density * T::HALF) {
        -T::ONE
    } else if u0 < density {
        T::ONE
    } else {
        T::ZERO
    }
}

fn sparse_normaliser<T: FloatExt>(k: usize, density: T) -> T {
    (T::from_usize(k) * density).recip().sqrt()
}

const fn hash_matrix_index(x: usize, y: usize, seed: u64) -> u64 {
    seahash_diffuse(seahash_diffuse(x as u64) ^ seed ^ (y as u64))
}

const fn seahash_diffuse(mut x: u64) -> u64 {
    // SeaHash diffusion function
    // https://docs.rs/seahash/4.1.0/src/seahash/helper.rs.html#75-92

    // These are derived from the PCG RNG's round. Thanks to @Veedrac for proposing
    // this. The basic idea is that we use dynamic shifts, which are determined
    // by the input itself. The shift is chosen by the higher bits, which means
    // that changing those flips the lower bits, which scatters upwards because
    // of the multiplication.

    x = x.wrapping_mul(0x6eed_0e9d_a4d9_4a4f);

    let a = x >> 32;
    let b = x >> 60;

    x ^= a >> b;

    x = x.wrapping_mul(0x6eed_0e9d_a4d9_4a4f);

    x
}

#[allow(clippy::derive_partial_eq_without_eq)] // floats are not Eq
#[derive(Copy, Clone, PartialEq, PartialOrd, Hash)]
/// Floating point number in [0.0, 1.0)
pub struct ClosedOpenUnit<T: FloatExt>(T);

#[allow(clippy::derive_partial_eq_without_eq)] // floats are not Eq
#[derive(Copy, Clone, PartialEq, PartialOrd, Hash)]
/// Floating point number in (0.0, 1.0]
pub struct OpenClosedUnit<T: FloatExt>(T);

impl Serialize for OpenClosedUnit<f64> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_f64(self.0)
    }
}

impl<'de> Deserialize<'de> for OpenClosedUnit<f64> {
    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        let x = f64::deserialize(deserializer)?;

        if x > 0.0 && x <= 1.0 {
            Ok(Self(x))
        } else {
            Err(serde::de::Error::invalid_value(
                serde::de::Unexpected::Float(x),
                &"a value in (0.0, 1.0]",
            ))
        }
    }
}

impl JsonSchema for OpenClosedUnit<f64> {
    fn schema_name() -> Cow<'static, str> {
        Cow::Borrowed("OpenClosedUnitF64")
    }

    fn schema_id() -> Cow<'static, str> {
        Cow::Borrowed(concat!(module_path!(), "::", "OpenClosedUnit<f64>"))
    }

    fn json_schema(_gen: &mut SchemaGenerator) -> Schema {
        json_schema!({
            "type": "number",
            "exclusiveMinimum": 0.0,
            "maximum": 1.0,
        })
    }
}

/// Floating point types.
pub trait FloatExt: Float + ConstZero + ConstOne + FloatConst + AddAssign {
    /// `0.5`
    const HALF: Self;
    /// `2.0`
    const TWO: Self;

    /// Converts from a [`f64`].
    #[must_use]
    fn from_f64(x: f64) -> Self;

    /// Converts from a [`usize`].
    #[must_use]
    fn from_usize(n: usize) -> Self;

    /// Converts into a [`usize`].
    #[must_use]
    fn into_usize(self) -> usize;

    /// Generates two uniform random numbers from a random `hash` value.
    ///
    /// The first is sampled from `[0.0, 1.0)`, the second from `(0.0, 1.0]`.
    #[must_use]
    fn u01x2(hash: u64) -> (ClosedOpenUnit<Self>, OpenClosedUnit<Self>);
}

impl FloatExt for f32 {
    const HALF: Self = 0.5;
    const TWO: Self = 2.0;

    #[allow(clippy::cast_possible_truncation)]
    fn from_f64(x: f64) -> Self {
        x as Self
    }

    #[allow(clippy::cast_precision_loss)]
    fn from_usize(n: usize) -> Self {
        n as Self
    }

    #[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
    fn into_usize(self) -> usize {
        self as usize
    }

    fn u01x2(hash: u64) -> (ClosedOpenUnit<Self>, OpenClosedUnit<Self>) {
        #[allow(clippy::cast_possible_truncation)] // split u64 into (u32, u32)
        let (low, high) = (
            (hash & u64::from(u32::MAX)) as u32,
            ((hash >> 32) & u64::from(u32::MAX)) as u32,
        );

        // https://prng.di.unimi.it -> Generating uniform doubles in the unit interval [0.0, 1.0)
        // the hash is shifted to only cover the mantissa
        #[allow(clippy::cast_precision_loss)]
        let u0 = ClosedOpenUnit(((high >> 8) as Self) * Self::from_bits(0x3380_0000_u32)); // 0x1.0p-24

        // https://prng.di.unimi.it -> Generating uniform doubles in the unit interval (0.0, 1.0]
        // the hash is shifted to only cover the mantissa
        #[allow(clippy::cast_precision_loss)]
        let u1 = OpenClosedUnit((((low >> 8) + 1) as Self) * Self::from_bits(0x3380_0000_u32)); // 0x1.0p-24

        (u0, u1)
    }
}

impl FloatExt for f64 {
    const HALF: Self = 0.5;
    const TWO: Self = 2.0;

    fn from_f64(x: f64) -> Self {
        x
    }

    #[allow(clippy::cast_precision_loss)]
    fn from_usize(n: usize) -> Self {
        n as Self
    }

    #[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
    fn into_usize(self) -> usize {
        self as usize
    }

    fn u01x2(hash: u64) -> (ClosedOpenUnit<Self>, OpenClosedUnit<Self>) {
        // https://prng.di.unimi.it -> Generating uniform doubles in the unit interval [0.0, 1.0)
        // the hash is shifted to only cover the mantissa
        #[allow(clippy::cast_precision_loss)]
        let u0 =
            ClosedOpenUnit(((hash >> 11) as Self) * Self::from_bits(0x3CA0_0000_0000_0000_u64)); // 0x1.0p-53

        let hash = seahash_diffuse(hash + 1);

        // https://prng.di.unimi.it -> Generating uniform doubles in the unit interval (0.0, 1.0]
        // the hash is shifted to only cover the mantissa
        #[allow(clippy::cast_precision_loss)]
        let u1 = OpenClosedUnit(
            (((hash >> 11) + 1) as Self) * Self::from_bits(0x3CA0_0000_0000_0000_u64),
        ); // 0x1.0p-53

        (u0, u1)
    }
}

#[cfg(test)]
#[allow(clippy::unwrap_used, clippy::expect_used)]
mod tests {
    use ndarray_rand::rand_distr::{Distribution, Normal};
    use ndarray_rand::RandomExt;

    use super::*;

    #[test]
    fn gaussian_f32() {
        test_error_decline::<f32>(
            (100, 100),
            Normal::new(42.0, 24.0).unwrap(),
            42,
            RandomProjectionKind::Gaussian,
        );
    }

    #[test]
    fn gaussian_f64() {
        test_error_decline::<f64>(
            (100, 100),
            Normal::new(42.0, 24.0).unwrap(),
            42,
            RandomProjectionKind::Gaussian,
        );
    }

    #[test]
    fn achlioptas_sparse_f32() {
        test_error_decline::<f32>(
            (100, 100),
            Normal::new(42.0, 24.0).unwrap(),
            42,
            RandomProjectionKind::Sparse {
                density: Some(OpenClosedUnit(1.0 / 3.0)),
            },
        );
    }

    #[test]
    fn achlioptas_sparse_f64() {
        test_error_decline::<f64>(
            (100, 100),
            Normal::new(42.0, 24.0).unwrap(),
            42,
            RandomProjectionKind::Sparse {
                density: Some(OpenClosedUnit(1.0 / 3.0)),
            },
        );
    }

    #[test]
    fn ping_li_sparse_f32() {
        test_error_decline::<f32>(
            (100, 100),
            Normal::new(42.0, 24.0).unwrap(),
            42,
            RandomProjectionKind::Sparse { density: None },
        );
    }

    #[test]
    fn ping_li_sparse_f64() {
        test_error_decline::<f64>(
            (100, 100),
            Normal::new(42.0, 24.0).unwrap(),
            42,
            RandomProjectionKind::Sparse { density: None },
        );
    }

    #[allow(clippy::needless_pass_by_value)]
    fn test_error_decline<T: FloatExt + std::fmt::Display>(
        shape: (usize, usize),
        distribution: impl Distribution<T>,
        seed: u64,
        projection: RandomProjectionKind,
    ) {
        let data = Array::<T, Ix2>::random(shape, distribution);

        let mut max_rmse = rmse(
            &data,
            &roundtrip(&data, 42, OpenClosedUnit(1.0), &projection),
        );

        for epsilon in [
            OpenClosedUnit(0.5),
            OpenClosedUnit(0.1),
            OpenClosedUnit(0.01),
        ] {
            let new_rmse = rmse(&data, &roundtrip(&data, seed, epsilon, &projection));
            assert!(
                new_rmse <= max_rmse,
                "{new_rmse} > {max_rmse} for {epsilon}",
                epsilon = epsilon.0
            );
            max_rmse = new_rmse;
        }
    }

    fn roundtrip<T: FloatExt>(
        data: &Array<T, Ix2>,
        seed: u64,
        epsilon: OpenClosedUnit<f64>,
        projection: &RandomProjectionKind,
    ) -> Array<T, Ix2> {
        let projected = project_with_projection(
            data.view(),
            seed,
            &RandomProjectionReduction::JohnsonLindenstrauss { epsilon },
            projection,
        )
        .expect("projecting must not fail");
        let reconstructed = reconstruct_with_projection(projected, seed, projection)
            .expect("reconstruction must not fail");
        #[allow(clippy::let_and_return)]
        reconstructed
    }

    fn rmse<T: FloatExt>(data: &Array<T, Ix2>, reconstructed: &Array<T, Ix2>) -> T {
        let mut err = T::ZERO;

        for (&d, &r) in data.iter().zip(reconstructed) {
            err += (d - r) * (d - r);
        }

        let mse = err * T::from_usize(data.len()).recip();
        mse.sqrt()
    }
}