numcodecs_random_projection/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
//! [![CI Status]][workflow] [![MSRV]][repo] [![Latest Version]][crates.io] [![Rust Doc Crate]][docs.rs] [![Rust Doc Main]][docs]
//!
//! [CI Status]: https://img.shields.io/github/actions/workflow/status/juntyr/numcodecs-rs/ci.yml?branch=main
//! [workflow]: https://github.com/juntyr/numcodecs-rs/actions/workflows/ci.yml?query=branch%3Amain
//!
//! [MSRV]: https://img.shields.io/badge/MSRV-1.81.0-blue
//! [repo]: https://github.com/juntyr/numcodecs-rs
//!
//! [Latest Version]: https://img.shields.io/crates/v/numcodecs-random-projection
//! [crates.io]: https://crates.io/crates/numcodecs-random-projection
//!
//! [Rust Doc Crate]: https://img.shields.io/docsrs/numcodecs-random-projection
//! [docs.rs]: https://docs.rs/numcodecs-random-projection/
//!
//! [Rust Doc Main]: https://img.shields.io/badge/docs-main-blue
//! [docs]: https://juntyr.github.io/numcodecs-rs/numcodecs_random_projection
//!
//! Random Projection codec implementation for the [`numcodecs`] API.
use std::{borrow::Cow, num::NonZeroUsize, ops::AddAssign};
use ndarray::{s, Array, ArrayBase, ArrayViewMut, Data, Dimension, Ix2, ShapeError, Zip};
use num_traits::{ConstOne, ConstZero, Float, FloatConst};
use numcodecs::{
AnyArray, AnyArrayAssignError, AnyArrayDType, AnyArrayView, AnyArrayViewMut, AnyCowArray,
Codec, StaticCodec, StaticCodecConfig,
};
use schemars::{json_schema, JsonSchema, Schema, SchemaGenerator};
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use thiserror::Error;
#[cfg(test)]
use ::serde_json as _;
/// Codec that uses random projections to reduce the dimensionality of high-
/// dimensional data to compress it.
///
/// A two-dimensional array of shape `N x D` is encoded as n array of shape
/// `N x K`, where `K` is either set explicitly or chosen using the the Johnson-
/// Lindenstrauss lemma. For `K` to be smaller than `D`, `D` must be quite
/// large. Therefore, this codec should only applied on large datasets as it
/// otherwise significantly inflates the data size instead of reducing it.
///
/// Choosing a lower distortion rate `epsilon` will improve the quality of the
/// lossy compression, i.e. reduce the compression error, at the cost of
/// increasing `K`.
///
/// This codec only supports finite floating point data.
#[derive(Clone, Serialize, Deserialize, JsonSchema)]
// FIXME: #[serde(deny_unknown_fields)]
pub struct RandomProjectionCodec {
/// Seed for generating the random projection matrix
pub seed: u64,
/// Method with which the reduced dimensionality `K` is selected
#[serde(flatten)]
pub reduction: RandomProjectionReduction,
/// Projection kind that is used to generate the random projection matrix
#[serde(flatten)]
pub projection: RandomProjectionKind,
}
/// Method with which the reduced dimensionality `K` is selected
#[derive(Clone, Serialize, Deserialize, JsonSchema)]
// FIXME: #[serde(deny_unknown_fields)]
#[serde(tag = "reduction", rename_all = "kebab-case")]
pub enum RandomProjectionReduction {
/// The reduced dimensionality `K` is derived from `epsilon`, as defined by
/// the Johnson-Lindenstrauss lemma.
JohnsonLindenstrauss {
/// Maximum distortion rate
epsilon: OpenClosedUnit<f64>,
},
/// The reduced dimensionality `K`, to which the data is projected, is given
/// explicitly.
Explicit {
/// Reduced dimensionality
k: NonZeroUsize,
},
}
/// Projection kind that is used to generate the random projection matrix
#[derive(Clone, Serialize, Deserialize, JsonSchema)]
// FIXME: #[serde(deny_unknown_fields)]
#[serde(tag = "projection", rename_all = "kebab-case")]
pub enum RandomProjectionKind {
/// The random projection matrix is dense and its components are sampled
/// from `N(0, 1/k)`
Gaussian,
/// The random projection matrix is sparse where only `density`% of entries
/// are non-zero.
///
/// The matrix's components are sampled from
///
/// - `-sqrt(1 / (k * density))` with probability `density/2`
/// - `0` with probability `1-density`
/// - `+sqrt(1 / (k * density))` with probability `density/2`
Sparse {
/// The `density` of the sparse projection matrix.
///
/// Setting `density` to `Some(1.0/3.0)` reproduces the settings by
/// Achlioptas [^1]. If `density` is `None`, it is set to `1/sqrt(d)`,
/// the minimum density as recommended by Li et al [^2].
///
///
/// [^1]: Achlioptas, D. (2003). Database-friendly random projections:
/// Johnson-Lindenstrauss with binary coins. *Journal of Computer
/// and System Sciences*, 66(4), 671-687. Available from:
/// [doi:10.1016/S0022-0000(03)00025-4](https://doi.org/10.1016/S0022-0000(03)00025-4).
///
/// [^2]: Li, P., Hastie, T. J., and Church, K. W. (2006). Very sparse
/// random projections. In *Proceedings of the 12th ACM SIGKDD
/// international conference on Knowledge discovery and data
/// mining (KDD '06)*. Association for Computing Machinery, New
/// York, NY, USA, 287–296. Available from:
/// [doi:10.1145/1150402.1150436](https://doi.org/10.1145/1150402.1150436).
#[serde(default, skip_serializing_if = "Option::is_none")]
density: Option<OpenClosedUnit<f64>>,
},
}
impl Codec for RandomProjectionCodec {
type Error = RandomProjectionCodecError;
fn encode(&self, data: AnyCowArray) -> Result<AnyArray, Self::Error> {
match data {
AnyCowArray::F32(data) => Ok(AnyArray::F32(
project_with_projection(data, self.seed, &self.reduction, &self.projection)?
.into_dyn(),
)),
AnyCowArray::F64(data) => Ok(AnyArray::F64(
project_with_projection(data, self.seed, &self.reduction, &self.projection)?
.into_dyn(),
)),
encoded => Err(RandomProjectionCodecError::UnsupportedDtype(
encoded.dtype(),
)),
}
}
fn decode(&self, encoded: AnyCowArray) -> Result<AnyArray, Self::Error> {
match encoded {
AnyCowArray::F32(encoded) => Ok(AnyArray::F32(
reconstruct_with_projection(encoded, self.seed, &self.projection)?.into_dyn(),
)),
AnyCowArray::F64(encoded) => Ok(AnyArray::F64(
reconstruct_with_projection(encoded, self.seed, &self.projection)?.into_dyn(),
)),
encoded => Err(RandomProjectionCodecError::UnsupportedDtype(
encoded.dtype(),
)),
}
}
fn decode_into(
&self,
encoded: AnyArrayView,
decoded: AnyArrayViewMut,
) -> Result<(), Self::Error> {
match (encoded, decoded) {
(AnyArrayView::F32(encoded), AnyArrayViewMut::F32(decoded)) => {
reconstruct_into_with_projection(encoded, decoded, self.seed, &self.projection)
}
(AnyArrayView::F64(encoded), AnyArrayViewMut::F64(decoded)) => {
reconstruct_into_with_projection(encoded, decoded, self.seed, &self.projection)
}
(encoded @ (AnyArrayView::F32(_) | AnyArrayView::F64(_)), decoded) => {
Err(RandomProjectionCodecError::MismatchedDecodeIntoArray {
source: AnyArrayAssignError::DTypeMismatch {
src: encoded.dtype(),
dst: decoded.dtype(),
},
})
}
(encoded, _decoded) => Err(RandomProjectionCodecError::UnsupportedDtype(
encoded.dtype(),
)),
}
}
}
impl StaticCodec for RandomProjectionCodec {
const CODEC_ID: &'static str = "random-projection";
type Config<'de> = Self;
fn from_config(config: Self::Config<'_>) -> Self {
config
}
fn get_config(&self) -> StaticCodecConfig<Self> {
StaticCodecConfig::from(self)
}
}
#[derive(Debug, Error)]
/// Errors that may occur when applying the [`RandomProjectionCodec`].
pub enum RandomProjectionCodecError {
/// [`RandomProjectionCodec`] does not support the dtype
#[error("RandomProjection does not support the dtype {0}")]
UnsupportedDtype(AnyArrayDType),
/// [`RandomProjectionCodec`] does not support the dtype
#[error("RandomProjection only supports matrix / 2d-shaped arrays")]
NonMatrixData {
/// The source of the error
#[from]
source: ShapeError,
},
/// [`RandomProjectionCodec`] does not support non-finite (infinite or NaN)
/// floating point data
#[error("RandomProjection does not support non-finite (infinite or NaN) floating point data")]
NonFiniteData,
/// [`RandomProjectionCodec`] cannot encode or decode from an array with `N`
/// samples to an array with a different number of samples
#[error("RandomProjection cannot encode or decode from an array with {input} samples to an array with {output} samples")]
NumberOfSamplesMismatch {
/// Number of samples `N` in the input array
input: usize,
/// Number of samples `N` in the output array
output: usize,
},
/// [`RandomProjectionCodec`] cannot decode from an array with zero
/// dimensionality `K`
#[error("RandomProjection cannot decode from an array with zero dimensionality `K`")]
ProjectedArrayZeroComponents,
/// [`RandomProjectionCodec`] cannot decode from an array with corrupted
/// dimensionality metadata
#[error("RandomProjection cannot decode from an array with corrupted dimensionality metadata")]
CorruptedNumberOfComponents,
/// [`RandomProjectionCodec`] cannot decode into an array with `D` features
/// that differs from the `D` stored in the encoded metadata
#[error("RandomProjection cannot decode into an array with {output} features that differs from the {metadata} features stored in the encoded metadata")]
NumberOfFeaturesMismatch {
/// Number of features `D` in the encoded array metadata
metadata: usize,
/// Number of features `D` in the decoded output array
output: usize,
},
/// [`RandomProjectionCodec`] cannot decode into the provided array
#[error("RandomProjection cannot decode into the provided array")]
MismatchedDecodeIntoArray {
/// The source of the error
#[from]
source: AnyArrayAssignError,
},
}
/// Applies random projection to the input `data` with the given `seed`,
/// `reduction` method, and `projection` kind and returns the resulting
/// projected array.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonMatrixData`] if the input `data` is not
/// a two-dimensional matrix
/// - [`RandomProjectionCodecError::NonFiniteData`] if the input `data` or
/// projected output contains non-finite data
pub fn project_with_projection<T: FloatExt, S: Data<Elem = T>, D: Dimension>(
data: ArrayBase<S, D>,
seed: u64,
reduction: &RandomProjectionReduction,
projection: &RandomProjectionKind,
) -> Result<Array<T, Ix2>, RandomProjectionCodecError> {
let data = data
.into_dimensionality()
.map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;
let (n, d) = data.dim();
let k = match reduction {
RandomProjectionReduction::JohnsonLindenstrauss { epsilon } => {
johnson_lindenstrauss_min_k(n, *epsilon)
}
RandomProjectionReduction::Explicit { k } => k.get(),
};
let mut projected = Array::<T, Ix2>::from_elem((n, k + 1), T::ZERO);
// stash the number of features `d` in an extra column
// this is quite inefficient but works for now
for p in projected.slice_mut(s!(.., k)) {
*p = T::from_usize(d);
}
match projection {
RandomProjectionKind::Gaussian => project_into(
data,
projected.slice_mut(s!(.., ..k)),
|x, y| gaussian_project(x, y, seed),
gaussian_normaliser(k),
),
RandomProjectionKind::Sparse { density } => {
let density = density_or_ping_li_minimum(*density, d);
project_into(
data,
projected.slice_mut(s!(.., ..k)),
|x, y| sparse_project(x, y, density, seed),
sparse_normaliser(k, density),
)
}
}?;
Ok(projected)
}
#[allow(clippy::needless_pass_by_value)]
/// Applies random projection to the input `data` and outputs into the
/// `projected` array.
///
/// The random projection matrix is defined by the `projection` function
/// `(i, j) -> P[i, j]` and a globally applied `normalizer` factor.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NumberOfSamplesMismatch`] if the input
/// `data`'s number of samples doesn't match the `projected` array's number
/// of samples
/// - [`RandomProjectionCodecError::NonFiniteData`] if the input `data` or
/// projected output contains non-finite data
pub fn project_into<T: FloatExt, S: Data<Elem = T>>(
data: ArrayBase<S, Ix2>,
mut projected: ArrayViewMut<T, Ix2>,
projection: impl Fn(usize, usize) -> T,
normalizer: T,
) -> Result<(), RandomProjectionCodecError> {
let (n, d) = data.dim();
let (n2, _k) = projected.dim();
if n2 != n {
return Err(RandomProjectionCodecError::NumberOfSamplesMismatch {
input: n,
output: n2,
});
}
let mut skip_projection_column = Vec::with_capacity(d);
for (j, projected_j) in projected.columns_mut().into_iter().enumerate() {
// materialize one column of the projection matrix
// i.e. instead of A x B = C, compute A x [bs] = [cs].T
// the column is stored in a sparse representation [(l, p)]
// where l is the index of the non-zero entry p
skip_projection_column.clear();
for l in 0..d {
let p = projection(l, j);
if !p.is_zero() {
skip_projection_column.push((l, p));
}
}
for (data_i, projected_ij) in data.rows().into_iter().zip(projected_j) {
let mut acc = T::ZERO;
#[allow(clippy::indexing_slicing)]
// data_i is of shape (d) and all l's are in 0..d
for &(l, p) in &skip_projection_column {
acc += data_i[l] * p;
}
*projected_ij = acc * normalizer;
}
}
if !Zip::from(projected).all(|x| x.is_finite()) {
return Err(RandomProjectionCodecError::NonFiniteData);
}
Ok(())
}
/// Applies the (approximate) inverse of random projection to the `projected`
/// array.
///
/// The input data is reconstructed with the given `seed` and `projection`
/// kind and returns the resulting reconstructed array.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonMatrixData`] if the `projected` array is
/// not a two-dimensional matrix
/// - [`RandomProjectionCodecError::ProjectedArrayZeroComponents`] if the
/// `projected` array is of shape `(n, 0)`
/// - [`RandomProjectionCodecError::CorruptedNumberOfComponents`] if the
/// `projected` array's dimensionality metadata is corrupted
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
/// the reconstructed output contains non-finite data
pub fn reconstruct_with_projection<T: FloatExt, S: Data<Elem = T>, D: Dimension>(
projected: ArrayBase<S, D>,
seed: u64,
projection: &RandomProjectionKind,
) -> Result<Array<T, Ix2>, RandomProjectionCodecError> {
let projected = projected
.into_dimensionality()
.map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;
if projected.is_empty() {
return Ok(projected.to_owned());
}
let (_n, k): (usize, usize) = projected.dim();
let Some(k) = k.checked_sub(1) else {
return Err(RandomProjectionCodecError::ProjectedArrayZeroComponents);
};
// extract the number of features `d` from the extra column and check that
// it has been preserved consistently across the column
let ds = projected.slice(s!(.., k));
let Ok(Some(d)) = ds.fold(Ok(None), |acc, d| match acc {
Ok(None) => Ok(Some(d.into_usize())),
Ok(Some(d2)) if d2 == d.into_usize() => Ok(Some(d2)),
_ => Err(()),
}) else {
return Err(RandomProjectionCodecError::CorruptedNumberOfComponents);
};
// extract the projected data, excluding the metadata column
let projected = projected.slice_move(s!(.., ..k));
match projection {
RandomProjectionKind::Gaussian => reconstruct(
projected,
d,
|x, y| gaussian_project(x, y, seed),
gaussian_normaliser(k),
),
RandomProjectionKind::Sparse { density } => {
let density = density_or_ping_li_minimum(*density, d);
reconstruct(
projected,
d,
|x, y| sparse_project(x, y, density, seed),
sparse_normaliser(k, density),
)
}
}
}
#[allow(clippy::needless_pass_by_value)]
/// Applies the (approximate) inverse of random projection to the `projected`
/// array to reconstruct the input data with dimensionality `d` and returns the
/// resulting reconstructed array.
///
/// The random projection matrix is defined by the `projection` function
/// `(i, j) -> P[i, j]` and a globally applied `normalizer` factor.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
/// the reconstructed output contains non-finite data
pub fn reconstruct<T: FloatExt, S: Data<Elem = T>>(
projected: ArrayBase<S, Ix2>,
d: usize,
projection: impl Fn(usize, usize) -> T,
normalizer: T,
) -> Result<Array<T, Ix2>, RandomProjectionCodecError> {
if projected.is_empty() {
return Ok(projected.to_owned());
}
let (n, k) = projected.dim();
let mut reconstructed = Array::<T, Ix2>::from_elem((n, d), T::ZERO);
let mut skip_projection_row = Vec::with_capacity(k);
for (l, reconstructed_l) in reconstructed.columns_mut().into_iter().enumerate() {
// materialize one row of the projection matrix transpose
// i.e. instead of A x B = C, compute A x [bs] = [cs].T
// the row is stored in a sparse representation [(j, p)]
// where j is the index of the non-zero entry p
skip_projection_row.clear();
for j in 0..k {
let p = projection(l, j);
if !p.is_zero() {
skip_projection_row.push((j, p));
}
}
for (projected_i, reconstructed_il) in projected.rows().into_iter().zip(reconstructed_l) {
let mut acc = T::ZERO;
#[allow(clippy::indexing_slicing)]
// projected_i is of shape (k) and all j's are in 0..k
for &(j, p) in &skip_projection_row {
acc += projected_i[j] * p;
}
*reconstructed_il = acc * normalizer;
}
}
if !Zip::from(&reconstructed).all(|x| x.is_finite()) {
return Err(RandomProjectionCodecError::NonFiniteData);
}
Ok(reconstructed)
}
/// Applies the (approximate) inverse of random projection to the `projected`
/// array to reconstruct the input data with the given `seed` and `projection`
/// kind and outputs into the `reconstructed` array.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NonMatrixData`] if the `projected` and
/// `reconstructed` arrays are not two-dimensional matrices
/// - [`RandomProjectionCodecError::NumberOfSamplesMismatch`] if the number of
/// samples `N` of the `projected` array don't match the number of samples of
/// the `reconstructed` array
/// - [`RandomProjectionCodecError::ProjectedArrayZeroComponents`] if the
/// `projected` array is of shape `(n, 0)`
/// - [`RandomProjectionCodecError::CorruptedNumberOfComponents`] if the
/// `projected` array's dimensionality metadata is corrupted
/// - [`RandomProjectionCodecError::NumberOfFeaturesMismatch`] if the
/// `reconstructed` array's dimensionality `D` does not match the `projected`
/// array's dimensionality metadata
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
/// the reconstructed output contains non-finite data
pub fn reconstruct_into_with_projection<T: FloatExt, S: Data<Elem = T>, D: Dimension>(
projected: ArrayBase<S, D>,
reconstructed: ArrayViewMut<T, D>,
seed: u64,
projection: &RandomProjectionKind,
) -> Result<(), RandomProjectionCodecError> {
let projected: ArrayBase<S, Ix2> = projected
.into_dimensionality()
.map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;
let reconstructed: ArrayViewMut<T, Ix2> = reconstructed
.into_dimensionality()
.map_err(|err| RandomProjectionCodecError::NonMatrixData { source: err })?;
let (n, k) = projected.dim();
let (n2, d2) = reconstructed.dim();
if n2 != n {
return Err(RandomProjectionCodecError::NumberOfSamplesMismatch {
input: n,
output: n2,
});
}
let Some(k) = k.checked_sub(1) else {
return Err(RandomProjectionCodecError::ProjectedArrayZeroComponents);
};
// extract the number of features `d` from the extra column and check that
// it has been preserved consistently across the column
let ds = projected.slice(s!(.., k));
let Ok(Some(d)) = ds.fold(Ok(None), |acc, d| match acc {
Ok(None) => Ok(Some(d.into_usize())),
Ok(Some(d2)) if d2 == d.into_usize() => Ok(Some(d2)),
_ => Err(()),
}) else {
return Err(RandomProjectionCodecError::CorruptedNumberOfComponents);
};
if d2 != d {
return Err(RandomProjectionCodecError::NumberOfFeaturesMismatch {
metadata: d,
output: d2,
});
}
// extract the projected data, excluding the metadata column
let projected = projected.slice_move(s!(.., ..k));
match projection {
RandomProjectionKind::Gaussian => reconstruct_into(
projected,
reconstructed,
|x, y| gaussian_project(x, y, seed),
gaussian_normaliser(k),
),
RandomProjectionKind::Sparse { density } => {
let density = density_or_ping_li_minimum(*density, d);
reconstruct_into(
projected,
reconstructed,
|x, y| sparse_project(x, y, density, seed),
sparse_normaliser(k, density),
)
}
}
}
#[allow(clippy::needless_pass_by_value)]
/// Applies the (approximate) inverse of random projection to the `projected`
/// array to reconstruct the input data outputs into the `reconstructed` array.
///
/// The random projection matrix is defined by the `projection` function
/// `(i, j) -> P[i, j]` and a globally applied `normalizer` factor.
///
/// # Errors
///
/// Errors with
/// - [`RandomProjectionCodecError::NumberOfSamplesMismatch`] if the number of
/// samples `N` of the `projected` array don't match the number of samples of
/// the `reconstructed` array
/// - [`RandomProjectionCodecError::NonFiniteData`] if the `projected` array or
/// the reconstructed output contains non-finite data
pub fn reconstruct_into<T: FloatExt, S: Data<Elem = T>>(
projected: ArrayBase<S, Ix2>,
mut reconstructed: ArrayViewMut<T, Ix2>,
projection: impl Fn(usize, usize) -> T,
normalizer: T,
) -> Result<(), RandomProjectionCodecError> {
let (n, k) = projected.dim();
let (n2, _d) = reconstructed.dim();
if n2 != n {
return Err(RandomProjectionCodecError::NumberOfSamplesMismatch {
input: n,
output: n2,
});
}
let mut skip_projection_row = Vec::with_capacity(k);
for (l, reconstructed_l) in reconstructed.columns_mut().into_iter().enumerate() {
// materialize one row of the projection matrix transpose
// i.e. instead of A x B = C, compute A x [bs] = [cs].T
// the row is stored in a sparse representation [(j, p)]
// where j is the index of the non-zero entry p
skip_projection_row.clear();
for j in 0..k {
let p = projection(l, j);
if !p.is_zero() {
skip_projection_row.push((j, p));
}
}
for (projected_i, reconstructed_il) in projected.rows().into_iter().zip(reconstructed_l) {
let mut acc = T::ZERO;
#[allow(clippy::indexing_slicing)]
// projected_i is of shape (k) and all j's are in 0..k
for &(j, p) in &skip_projection_row {
acc += projected_i[j] * p;
}
*reconstructed_il = acc * normalizer;
}
}
if !Zip::from(reconstructed).all(|x| x.is_finite()) {
return Err(RandomProjectionCodecError::NonFiniteData);
}
Ok(())
}
/// Find a 'safe' number of components `K` to randomly project to.
///
/// The minimum number of components to guarantee the eps-embedding is
/// given by `K >= 4 log(N) / (eps^2 / 2 - eps^3 / 3)`.
///
/// The implementation is adapted from [`sklearn`]'s.
///
/// [`sklearn`]: https://github.com/scikit-learn/scikit-learn/blob/3b39d7cb957ab781744b346c1848be9db3f4e221/sklearn/random_projection.py#L56-L142
#[must_use]
pub fn johnson_lindenstrauss_min_k(
n_samples: usize,
OpenClosedUnit(epsilon): OpenClosedUnit<f64>,
) -> usize {
#[allow(clippy::suboptimal_flops)]
let denominator = (epsilon * epsilon * 0.5) - (epsilon * epsilon * epsilon / 3.0);
#[allow(clippy::cast_precision_loss)]
let min_k = (n_samples as f64).ln() * 4.0 / denominator;
#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
let min_k = min_k as usize;
min_k
}
/// Extract the provided `density` if it is `Some(_)`, or compute the minimum
/// required density `1/sqrt(d)` as recommended by Li et al [^3].
///
/// [^3]: Li, P., Hastie, T. J., and Church, K. W. (2006). Very sparse
/// random projections. In *Proceedings of the 12th ACM SIGKDD
/// international conference on Knowledge discovery and data
/// mining (KDD '06)*. Association for Computing Machinery, New
/// York, NY, USA, 287–296. Available from:
/// [doi:10.1145/1150402.1150436](https://doi.org/10.1145/1150402.1150436).
#[must_use]
pub fn density_or_ping_li_minimum<T: FloatExt>(
density: Option<OpenClosedUnit<f64>>,
d: usize,
) -> T {
match density {
Some(OpenClosedUnit(density)) => T::from_f64(density),
None => T::from_usize(d).sqrt().recip(),
}
}
/// Sample from `N(0, 1)` at the coordinate `(x, y)` with the random `seed`
fn gaussian_project<T: FloatExt>(x: usize, y: usize, seed: u64) -> T {
let (ClosedOpenUnit(u0), OpenClosedUnit(u1)) = T::u01x2(hash_matrix_index(x, y, seed));
let theta = -T::TAU() * u0;
let r = (-T::TWO * u1.ln()).sqrt();
r * theta.sin()
}
fn gaussian_normaliser<T: FloatExt>(k: usize) -> T {
T::from_usize(k).sqrt().recip()
}
/// Sample from `{ -1, 0, +1 }` with probabilities
/// `{ density/2, 1-density, density/2 }` at the coordinate `(x, y)` with the
/// random `seed`
fn sparse_project<T: FloatExt>(x: usize, y: usize, density: T, seed: u64) -> T {
let (ClosedOpenUnit(u0), _u1) = T::u01x2(hash_matrix_index(x, y, seed));
if u0 < (density * T::HALF) {
-T::ONE
} else if u0 < density {
T::ONE
} else {
T::ZERO
}
}
fn sparse_normaliser<T: FloatExt>(k: usize, density: T) -> T {
(T::from_usize(k) * density).recip().sqrt()
}
const fn hash_matrix_index(x: usize, y: usize, seed: u64) -> u64 {
seahash_diffuse(seahash_diffuse(x as u64) ^ seed ^ (y as u64))
}
const fn seahash_diffuse(mut x: u64) -> u64 {
// SeaHash diffusion function
// https://docs.rs/seahash/4.1.0/src/seahash/helper.rs.html#75-92
// These are derived from the PCG RNG's round. Thanks to @Veedrac for proposing
// this. The basic idea is that we use dynamic shifts, which are determined
// by the input itself. The shift is chosen by the higher bits, which means
// that changing those flips the lower bits, which scatters upwards because
// of the multiplication.
x = x.wrapping_mul(0x6eed_0e9d_a4d9_4a4f);
let a = x >> 32;
let b = x >> 60;
x ^= a >> b;
x = x.wrapping_mul(0x6eed_0e9d_a4d9_4a4f);
x
}
#[allow(clippy::derive_partial_eq_without_eq)] // floats are not Eq
#[derive(Copy, Clone, PartialEq, PartialOrd, Hash)]
/// Floating point number in [0.0, 1.0)
pub struct ClosedOpenUnit<T: FloatExt>(T);
#[allow(clippy::derive_partial_eq_without_eq)] // floats are not Eq
#[derive(Copy, Clone, PartialEq, PartialOrd, Hash)]
/// Floating point number in (0.0, 1.0]
pub struct OpenClosedUnit<T: FloatExt>(T);
impl Serialize for OpenClosedUnit<f64> {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
serializer.serialize_f64(self.0)
}
}
impl<'de> Deserialize<'de> for OpenClosedUnit<f64> {
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
let x = f64::deserialize(deserializer)?;
if x > 0.0 && x <= 1.0 {
Ok(Self(x))
} else {
Err(serde::de::Error::invalid_value(
serde::de::Unexpected::Float(x),
&"a value in (0.0, 1.0]",
))
}
}
}
impl JsonSchema for OpenClosedUnit<f64> {
fn schema_name() -> Cow<'static, str> {
Cow::Borrowed("OpenClosedUnitF64")
}
fn schema_id() -> Cow<'static, str> {
Cow::Borrowed(concat!(module_path!(), "::", "OpenClosedUnit<f64>"))
}
fn json_schema(_gen: &mut SchemaGenerator) -> Schema {
json_schema!({
"type": "number",
"exclusiveMinimum": 0.0,
"maximum": 1.0,
})
}
}
/// Floating point types.
pub trait FloatExt: Float + ConstZero + ConstOne + FloatConst + AddAssign {
/// `0.5`
const HALF: Self;
/// `2.0`
const TWO: Self;
/// Converts from a [`f64`].
#[must_use]
fn from_f64(x: f64) -> Self;
/// Converts from a [`usize`].
#[must_use]
fn from_usize(n: usize) -> Self;
/// Converts into a [`usize`].
#[must_use]
fn into_usize(self) -> usize;
/// Generates two uniform random numbers from a random `hash` value.
///
/// The first is sampled from `[0.0, 1.0)`, the second from `(0.0, 1.0]`.
#[must_use]
fn u01x2(hash: u64) -> (ClosedOpenUnit<Self>, OpenClosedUnit<Self>);
}
impl FloatExt for f32 {
const HALF: Self = 0.5;
const TWO: Self = 2.0;
#[allow(clippy::cast_possible_truncation)]
fn from_f64(x: f64) -> Self {
x as Self
}
#[allow(clippy::cast_precision_loss)]
fn from_usize(n: usize) -> Self {
n as Self
}
#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
fn into_usize(self) -> usize {
self as usize
}
fn u01x2(hash: u64) -> (ClosedOpenUnit<Self>, OpenClosedUnit<Self>) {
#[allow(clippy::cast_possible_truncation)] // split u64 into (u32, u32)
let (low, high) = (
(hash & u64::from(u32::MAX)) as u32,
((hash >> 32) & u64::from(u32::MAX)) as u32,
);
// https://prng.di.unimi.it -> Generating uniform doubles in the unit interval [0.0, 1.0)
// the hash is shifted to only cover the mantissa
#[allow(clippy::cast_precision_loss)]
let u0 = ClosedOpenUnit(((high >> 8) as Self) * Self::from_bits(0x3380_0000_u32)); // 0x1.0p-24
// https://prng.di.unimi.it -> Generating uniform doubles in the unit interval (0.0, 1.0]
// the hash is shifted to only cover the mantissa
#[allow(clippy::cast_precision_loss)]
let u1 = OpenClosedUnit((((low >> 8) + 1) as Self) * Self::from_bits(0x3380_0000_u32)); // 0x1.0p-24
(u0, u1)
}
}
impl FloatExt for f64 {
const HALF: Self = 0.5;
const TWO: Self = 2.0;
fn from_f64(x: f64) -> Self {
x
}
#[allow(clippy::cast_precision_loss)]
fn from_usize(n: usize) -> Self {
n as Self
}
#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
fn into_usize(self) -> usize {
self as usize
}
fn u01x2(hash: u64) -> (ClosedOpenUnit<Self>, OpenClosedUnit<Self>) {
// https://prng.di.unimi.it -> Generating uniform doubles in the unit interval [0.0, 1.0)
// the hash is shifted to only cover the mantissa
#[allow(clippy::cast_precision_loss)]
let u0 =
ClosedOpenUnit(((hash >> 11) as Self) * Self::from_bits(0x3CA0_0000_0000_0000_u64)); // 0x1.0p-53
let hash = seahash_diffuse(hash + 1);
// https://prng.di.unimi.it -> Generating uniform doubles in the unit interval (0.0, 1.0]
// the hash is shifted to only cover the mantissa
#[allow(clippy::cast_precision_loss)]
let u1 = OpenClosedUnit(
(((hash >> 11) + 1) as Self) * Self::from_bits(0x3CA0_0000_0000_0000_u64),
); // 0x1.0p-53
(u0, u1)
}
}
#[cfg(test)]
#[allow(clippy::unwrap_used, clippy::expect_used)]
mod tests {
use ndarray_rand::rand_distr::{Distribution, Normal};
use ndarray_rand::RandomExt;
use super::*;
#[test]
fn gaussian_f32() {
test_error_decline::<f32>(
(100, 100),
Normal::new(42.0, 24.0).unwrap(),
42,
RandomProjectionKind::Gaussian,
);
}
#[test]
fn gaussian_f64() {
test_error_decline::<f64>(
(100, 100),
Normal::new(42.0, 24.0).unwrap(),
42,
RandomProjectionKind::Gaussian,
);
}
#[test]
fn achlioptas_sparse_f32() {
test_error_decline::<f32>(
(100, 100),
Normal::new(42.0, 24.0).unwrap(),
42,
RandomProjectionKind::Sparse {
density: Some(OpenClosedUnit(1.0 / 3.0)),
},
);
}
#[test]
fn achlioptas_sparse_f64() {
test_error_decline::<f64>(
(100, 100),
Normal::new(42.0, 24.0).unwrap(),
42,
RandomProjectionKind::Sparse {
density: Some(OpenClosedUnit(1.0 / 3.0)),
},
);
}
#[test]
fn ping_li_sparse_f32() {
test_error_decline::<f32>(
(100, 100),
Normal::new(42.0, 24.0).unwrap(),
42,
RandomProjectionKind::Sparse { density: None },
);
}
#[test]
fn ping_li_sparse_f64() {
test_error_decline::<f64>(
(100, 100),
Normal::new(42.0, 24.0).unwrap(),
42,
RandomProjectionKind::Sparse { density: None },
);
}
#[allow(clippy::needless_pass_by_value)]
fn test_error_decline<T: FloatExt + std::fmt::Display>(
shape: (usize, usize),
distribution: impl Distribution<T>,
seed: u64,
projection: RandomProjectionKind,
) {
let data = Array::<T, Ix2>::random(shape, distribution);
let mut max_rmse = rmse(
&data,
&roundtrip(&data, 42, OpenClosedUnit(1.0), &projection),
);
for epsilon in [
OpenClosedUnit(0.5),
OpenClosedUnit(0.1),
OpenClosedUnit(0.01),
] {
let new_rmse = rmse(&data, &roundtrip(&data, seed, epsilon, &projection));
assert!(
new_rmse <= max_rmse,
"{new_rmse} > {max_rmse} for {epsilon}",
epsilon = epsilon.0
);
max_rmse = new_rmse;
}
}
fn roundtrip<T: FloatExt>(
data: &Array<T, Ix2>,
seed: u64,
epsilon: OpenClosedUnit<f64>,
projection: &RandomProjectionKind,
) -> Array<T, Ix2> {
let projected = project_with_projection(
data.view(),
seed,
&RandomProjectionReduction::JohnsonLindenstrauss { epsilon },
projection,
)
.expect("projecting must not fail");
let reconstructed = reconstruct_with_projection(projected, seed, projection)
.expect("reconstruction must not fail");
#[allow(clippy::let_and_return)]
reconstructed
}
fn rmse<T: FloatExt>(data: &Array<T, Ix2>, reconstructed: &Array<T, Ix2>) -> T {
let mut err = T::ZERO;
for (&d, &r) in data.iter().zip(reconstructed) {
err += (d - r) * (d - r);
}
let mse = err * T::from_usize(data.len()).recip();
mse.sqrt()
}
}