pub fn johnson_lindenstrauss_min_k(
n_samples: usize,
OpenClosedUnit: OpenClosedUnit<f64>,
) -> usize
Expand description
Find a ‘safe’ number of components $K$
to randomly project to.
The minimum number of components to guarantee the $\epsilon$
-embedding is
given by
$K \ge \frac{4 \cdot \ln(N)}{\frac{{\epsilon}^{2}}{2} - \frac{{\epsilon}^{3}}{3}}$
.
The implementation is adapted from sklearn
’s.