1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
use std::{ffi::CString, ops::Deref, ptr::NonNull};
use super::{PtxElement, PtxJITCompiler, PtxJITResult, PtxLoadWidth};
impl PtxJITCompiler {
#[expect(clippy::too_many_lines)]
pub fn with_arguments(&mut self, arguments: Option<&[Option<&NonNull<[u8]>>]>) -> PtxJITResult {
// Check if the arguments, cast as byte slices, are the same as the last cached
// ones
#[expect(clippy::explicit_deref_methods)]
let needs_recomputation = match (arguments, &self.last_arguments) {
(None, None) => false,
(Some(arguments), Some(last_arguments)) if arguments.len() == last_arguments.len() => {
arguments
.iter()
.zip(last_arguments.iter())
.all(|(a, b)| match (a, b) {
(None, None) => false,
(Some(a), Some(b)) => (unsafe { a.as_ref() }) != b.deref(),
_ => true,
})
},
_ => true,
};
// Recompute the PTX string, optionally with constant loads, with the new
// arguments
if needs_recomputation {
// Cache the new arguments
self.last_arguments = arguments.map(|arguments| {
arguments
.iter()
.map(|arg| {
arg.map(|bytes| unsafe { bytes.as_ref() }.to_owned().into_boxed_slice())
})
.collect::<Vec<Option<Box<[u8]>>>>()
.into_boxed_slice()
});
let mut output_ptx = Vec::new();
let mut buffer_ptx = Vec::new();
if let Some(args) = &self.last_arguments {
// Some constant loads are required, rebuild PTX string from source and newly
// generated constant load instructions
for element in &self.ptx_slices {
match element {
PtxElement::CopiedSource { ptx } => output_ptx.extend_from_slice(ptx),
PtxElement::ConstLoad {
ptx,
parameter_index,
byte_offset,
load_width,
registers,
} => {
let mut byte_offset = *byte_offset;
let mut registers_iter = registers.iter();
let Some(mut register) = registers_iter.next() else {
continue;
};
loop {
// Only generate a constant load instructions if the arguments
// contain the byte range requested
// by the load instruction
if let Some(Some(arg)) = args.get(*parameter_index) {
let load_width_bytes = match load_width {
PtxLoadWidth::B1 => 1,
PtxLoadWidth::B2 => 2,
PtxLoadWidth::B4 => 4,
PtxLoadWidth::B8 => 8,
};
if let Some(bytes) =
arg.get(byte_offset..(byte_offset + load_width_bytes))
{
byte_offset += load_width_bytes;
// Generate the mov instruction with the correct data type
buffer_ptx.extend_from_slice(b"mov.");
buffer_ptx.push(if register.contains(&b'r') {
b'u'
} else {
b'f'
});
buffer_ptx.extend_from_slice(if register.contains(&b's') {
b"16"
} else if register.contains(&b'd') {
b"64"
} else {
b"32"
});
buffer_ptx.extend_from_slice(b" \t");
// Append the destination register from the load
// instruction
buffer_ptx.extend_from_slice(register);
// Generate the hexadecimal constant in little-endian
// order
buffer_ptx.extend_from_slice(b", 0");
buffer_ptx.push(if register.contains(&b'r') {
b'x'
} else if register.contains(&b'd') {
b'd'
} else {
b'f'
});
for byte in bytes.iter().rev() {
buffer_ptx
.push(b"0123456789ABCDEF"[usize::from(*byte >> 4)]);
buffer_ptx.push(
b"0123456789ABCDEF"[usize::from(*byte & 0x0F_u8)],
);
}
if register.contains(&b'r') {
buffer_ptx.push(b'U');
}
buffer_ptx.push(b';');
if let Some(next_register) = registers_iter.next() {
// Early continue to the next `PtxElement` to avoid
// else branch
register = next_register;
buffer_ptx.push(b' ');
continue;
}
// const load generation finished successfully
// flush the generated instruction(s)
output_ptx.append(&mut buffer_ptx);
break;
}
}
// else: const load generation failed
// fall back to original PTX source
output_ptx.extend_from_slice(ptx);
buffer_ptx.clear();
break;
}
},
}
}
} else {
// No constant loads are requires, just rebuild the PTX string from its slices
for element in &self.ptx_slices {
match element {
PtxElement::CopiedSource { ptx } | PtxElement::ConstLoad { ptx, .. } => {
output_ptx.extend_from_slice(ptx);
},
}
}
}
// Cache the newly built PTX string
self.last_ptx = unsafe { CString::from_vec_unchecked(output_ptx) };
}
if needs_recomputation {
PtxJITResult::Recomputed(&self.last_ptx)
} else {
PtxJITResult::Cached(&self.last_ptx)
}
}
}