numcodecs_uniform_noise/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
//! [![CI Status]][workflow] [![MSRV]][repo] [![Latest Version]][crates.io] [![Rust Doc Crate]][docs.rs] [![Rust Doc Main]][docs]
//!
//! [CI Status]: https://img.shields.io/github/actions/workflow/status/juntyr/numcodecs-rs/ci.yml?branch=main
//! [workflow]: https://github.com/juntyr/numcodecs-rs/actions/workflows/ci.yml?query=branch%3Amain
//!
//! [MSRV]: https://img.shields.io/badge/MSRV-1.81.0-blue
//! [repo]: https://github.com/juntyr/numcodecs-rs
//!
//! [Latest Version]: https://img.shields.io/crates/v/numcodecs-uniform-noise
//! [crates.io]: https://crates.io/crates/numcodecs-uniform-noise
//!
//! [Rust Doc Crate]: https://img.shields.io/docsrs/numcodecs-uniform-noise
//! [docs.rs]: https://docs.rs/numcodecs-uniform-noise/
//!
//! [Rust Doc Main]: https://img.shields.io/badge/docs-main-blue
//! [docs]: https://juntyr.github.io/numcodecs-rs/numcodecs_uniform_noise
//!
//! Uniform noise codec implementation for the [`numcodecs`] API.

use std::hash::{Hash, Hasher};

use ndarray::{Array, ArrayBase, Data, Dimension};
use num_traits::Float;
use numcodecs::{
    AnyArray, AnyArrayAssignError, AnyArrayDType, AnyArrayView, AnyArrayViewMut, AnyCowArray,
    Codec, StaticCodec, StaticCodecConfig,
};
use rand::{
    distributions::{Distribution, Open01},
    SeedableRng,
};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use thiserror::Error;
use wyhash::{WyHash, WyRng};

#[derive(Clone, Serialize, Deserialize, JsonSchema)]
#[serde(deny_unknown_fields)]
/// Codec that adds `seed`ed `U(-scale/2, scale/2)` uniform noise of the given
/// `scale` during encoding and passes through the input unchanged during
/// decoding.
///
/// This codec first hashes the input array data and shape to then seed a
/// pseudo-random number generator that generates the uniform noise. Therefore,
/// passing in the same input with the same `seed` will produce the same noise
/// and thus the same encoded output.
pub struct UniformNoiseCodec {
    /// Scale of the uniform noise, which is sampled from
    /// `U(-scale/2, +scale/2)`
    pub scale: f64,
    /// Seed for the random noise generator
    pub seed: u64,
}

impl Codec for UniformNoiseCodec {
    type Error = UniformNoiseCodecError;

    fn encode(&self, data: AnyCowArray) -> Result<AnyArray, Self::Error> {
        match data {
            #[allow(clippy::cast_possible_truncation)]
            AnyCowArray::F32(data) => Ok(AnyArray::F32(add_uniform_noise(
                data,
                self.scale as f32,
                self.seed,
            ))),
            AnyCowArray::F64(data) => Ok(AnyArray::F64(add_uniform_noise(
                data, self.scale, self.seed,
            ))),
            encoded => Err(UniformNoiseCodecError::UnsupportedDtype(encoded.dtype())),
        }
    }

    fn decode(&self, encoded: AnyCowArray) -> Result<AnyArray, Self::Error> {
        match encoded {
            AnyCowArray::F32(encoded) => Ok(AnyArray::F32(encoded.into_owned())),
            AnyCowArray::F64(encoded) => Ok(AnyArray::F64(encoded.into_owned())),
            encoded => Err(UniformNoiseCodecError::UnsupportedDtype(encoded.dtype())),
        }
    }

    fn decode_into(
        &self,
        encoded: AnyArrayView,
        mut decoded: AnyArrayViewMut,
    ) -> Result<(), Self::Error> {
        if !matches!(encoded.dtype(), AnyArrayDType::F32 | AnyArrayDType::F64) {
            return Err(UniformNoiseCodecError::UnsupportedDtype(encoded.dtype()));
        }

        Ok(decoded.assign(&encoded)?)
    }
}

impl StaticCodec for UniformNoiseCodec {
    const CODEC_ID: &'static str = "uniform-noise";

    type Config<'de> = Self;

    fn from_config(config: Self::Config<'_>) -> Self {
        config
    }

    fn get_config(&self) -> StaticCodecConfig<Self> {
        StaticCodecConfig::from(self)
    }
}

#[derive(Debug, Error)]
/// Errors that may occur when applying the [`UniformNoiseCodec`].
pub enum UniformNoiseCodecError {
    /// [`UniformNoiseCodec`] does not support the dtype
    #[error("UniformNoise does not support the dtype {0}")]
    UnsupportedDtype(AnyArrayDType),
    /// [`UniformNoiseCodec`] cannot decode into the provided array
    #[error("UniformNoise cannot decode into the provided array")]
    MismatchedDecodeIntoArray {
        /// The source of the error
        #[from]
        source: AnyArrayAssignError,
    },
}

/// Adds `U(-scale/2, scale/2)` uniform random noise to the input `data`.
///
/// This function first hashes the input and its shape to then seed a pseudo-
/// random number generator that generates the uniform noise. Therefore,
/// passing in the same input with the same `seed` will produce the same noise
/// and thus the same output.
#[must_use]
pub fn add_uniform_noise<T: FloatExt, S: Data<Elem = T>, D: Dimension>(
    data: ArrayBase<S, D>,
    scale: T,
    seed: u64,
) -> Array<T, D>
where
    Open01: Distribution<T>,
{
    let mut hasher = WyHash::with_seed(seed);
    // hashing the shape provides a prefix for the flattened data
    data.shape().hash(&mut hasher);
    // the data must be visited in a defined order
    data.iter().copied().for_each(|x| x.hash_bits(&mut hasher));
    let seed = hasher.finish();

    let mut rng: WyRng = WyRng::seed_from_u64(seed);

    let mut encoded = data.into_owned();

    // the data must be visited in a defined order
    for x in &mut encoded {
        // x = U(0,1)*scale + (scale*-0.5 + x)
        // --- is equivalent to ---
        // x += U(-scale/2, +scale/2)
        *x = Open01
            .sample(&mut rng)
            .mul_add(scale, scale.mul_add(T::NEG_HALF, *x));
    }

    encoded
}

/// Floating point types
pub trait FloatExt: Float {
    /// -0.5
    const NEG_HALF: Self;

    /// Hash the binary representation of the floating point value
    fn hash_bits<H: Hasher>(self, hasher: &mut H);
}

impl FloatExt for f32 {
    const NEG_HALF: Self = -0.5;

    fn hash_bits<H: Hasher>(self, hasher: &mut H) {
        hasher.write_u32(self.to_bits());
    }
}

impl FloatExt for f64 {
    const NEG_HALF: Self = -0.5;

    fn hash_bits<H: Hasher>(self, hasher: &mut H) {
        hasher.write_u64(self.to_bits());
    }
}