numcodecs_linear_quantize/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#![allow(clippy::multiple_crate_versions)] // FIXME: twofloat -> hexf -> syn 1.0

//! [![CI Status]][workflow] [![MSRV]][repo] [![Latest Version]][crates.io] [![Rust Doc Crate]][docs.rs] [![Rust Doc Main]][docs]
//!
//! [CI Status]: https://img.shields.io/github/actions/workflow/status/juntyr/numcodecs-rs/ci.yml?branch=main
//! [workflow]: https://github.com/juntyr/numcodecs-rs/actions/workflows/ci.yml?query=branch%3Amain
//!
//! [MSRV]: https://img.shields.io/badge/MSRV-1.76.0-blue
//! [repo]: https://github.com/juntyr/numcodecs-rs
//!
//! [Latest Version]: https://img.shields.io/crates/v/numcodecs-linear-quantize
//! [crates.io]: https://crates.io/crates/numcodecs-linear-quantize
//!
//! [Rust Doc Crate]: https://img.shields.io/docsrs/numcodecs-linear-quantize
//! [docs.rs]: https://docs.rs/numcodecs-linear-quantize/
//!
//! [Rust Doc Main]: https://img.shields.io/badge/docs-main-blue
//! [docs]: https://juntyr.github.io/numcodecs-rs/numcodecs_linear_quantize
//!
//! Linear Quantization codec implementation for the [`numcodecs`] API.

use std::{borrow::Cow, fmt};

use ndarray::{Array, Array1, ArrayBase, ArrayD, ArrayViewMutD, Data, Dimension, ShapeError, Zip};
use num_traits::{ConstOne, ConstZero, Float};
use numcodecs::{
    AnyArray, AnyArrayDType, AnyArrayView, AnyArrayViewMut, AnyCowArray, Codec, StaticCodec,
    StaticCodecConfig,
};
use schemars::{JsonSchema, JsonSchema_repr};
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use serde_repr::{Deserialize_repr, Serialize_repr};
use thiserror::Error;
use twofloat::TwoFloat;

#[derive(Clone, Serialize, Deserialize, JsonSchema)]
#[serde(deny_unknown_fields)]
/// Lossy codec to reduce the precision of floating point data.
///
/// The data is quantized to unsigned integers of the best-fitting type.
/// The range and shape of the input data is stored in-band.
pub struct LinearQuantizeCodec {
    /// Dtype of the decoded data
    pub dtype: LinearQuantizeDType,
    /// Binary precision of the encoded data where `bits = log2(bins)`
    pub bits: LinearQuantizeBins,
}

/// Data types which the [`LinearQuantizeCodec`] can quantize
#[derive(Copy, Clone, Debug, Serialize, Deserialize, JsonSchema)]
#[schemars(extend("enum" = ["f32", "float32", "f64", "float64"]))]
#[allow(missing_docs)]
pub enum LinearQuantizeDType {
    #[serde(rename = "f32", alias = "float32")]
    F32,
    #[serde(rename = "f64", alias = "float64")]
    F64,
}

impl fmt::Display for LinearQuantizeDType {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.write_str(match self {
            Self::F32 => "f32",
            Self::F64 => "f64",
        })
    }
}

/// Number of bins for quantization, written in base-2 scientific notation.
///
/// The binary `#[repr(u8)]` value of each variant is equivalent to the binary
/// logarithm of the number of bins, i.e. the binary precision or the number of
/// bits used.
#[derive(Copy, Clone, Serialize_repr, Deserialize_repr, JsonSchema_repr)]
#[repr(u8)]
#[rustfmt::skip]
#[allow(missing_docs)]
pub enum LinearQuantizeBins {
    _1B1 = 1, _1B2, _1B3, _1B4, _1B5, _1B6, _1B7, _1B8,
    _1B9, _1B10, _1B11, _1B12, _1B13, _1B14, _1B15, _1B16,
    _1B17, _1B18, _1B19, _1B20, _1B21, _1B22, _1B23, _1B24,
    _1B25, _1B26, _1B27, _1B28, _1B29, _1B30, _1B31, _1B32,
    _1B33, _1B34, _1B35, _1B36, _1B37, _1B38, _1B39, _1B40,
    _1B41, _1B42, _1B43, _1B44, _1B45, _1B46, _1B47, _1B48,
    _1B49, _1B50, _1B51, _1B52, _1B53, _1B54, _1B55, _1B56,
    _1B57, _1B58, _1B59, _1B60, _1B61, _1B62, _1B63, _1B64,
}

impl Codec for LinearQuantizeCodec {
    type Error = LinearQuantizeCodecError;

    #[allow(clippy::too_many_lines)]
    fn encode(&self, data: AnyCowArray) -> Result<AnyArray, Self::Error> {
        let encoded = match (&data, self.dtype) {
            (AnyCowArray::F32(data), LinearQuantizeDType::F32) => match self.bits as u8 {
                bits @ ..=8 => AnyArray::U8(
                    Array1::from_vec(quantize(data, |x| {
                        let max = f32::from(u8::MAX >> (8 - bits));
                        let x = x.mul_add(scale_for_bits::<f32>(bits), 0.5).clamp(0.0, max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            x.to_int_unchecked::<u8>()
                        }
                    })?)
                    .into_dyn(),
                ),
                bits @ 9..=16 => AnyArray::U16(
                    Array1::from_vec(quantize(data, |x| {
                        let max = f32::from(u16::MAX >> (16 - bits));
                        let x = x.mul_add(scale_for_bits::<f32>(bits), 0.5).clamp(0.0, max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            x.to_int_unchecked::<u16>()
                        }
                    })?)
                    .into_dyn(),
                ),
                bits @ 17..=32 => AnyArray::U32(
                    Array1::from_vec(quantize(data, |x| {
                        // we need to use f64 here to have sufficient precision
                        let max = f64::from(u32::MAX >> (32 - bits));
                        let x = f64::from(x)
                            .mul_add(scale_for_bits::<f64>(bits), 0.5)
                            .clamp(0.0, max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            x.to_int_unchecked::<u32>()
                        }
                    })?)
                    .into_dyn(),
                ),
                bits @ 33.. => AnyArray::U64(
                    Array1::from_vec(quantize(data, |x| {
                        // we need to use TwoFloat here to have sufficient precision
                        let max = TwoFloat::from(u64::MAX >> (64 - bits));
                        let x = (TwoFloat::from(x) * scale_for_bits::<f64>(bits)
                            + TwoFloat::from(0.5))
                        .max(TwoFloat::from(0.0))
                        .min(max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            u64::try_from(x).unwrap_unchecked()
                        }
                    })?)
                    .into_dyn(),
                ),
            },
            (AnyCowArray::F64(data), LinearQuantizeDType::F64) => match self.bits as u8 {
                bits @ ..=8 => AnyArray::U8(
                    Array1::from_vec(quantize(data, |x| {
                        let max = f64::from(u8::MAX >> (8 - bits));
                        let x = x.mul_add(scale_for_bits::<f64>(bits), 0.5).clamp(0.0, max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            x.to_int_unchecked::<u8>()
                        }
                    })?)
                    .into_dyn(),
                ),
                bits @ 9..=16 => AnyArray::U16(
                    Array1::from_vec(quantize(data, |x| {
                        let max = f64::from(u16::MAX >> (16 - bits));
                        let x = x.mul_add(scale_for_bits::<f64>(bits), 0.5).clamp(0.0, max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            x.to_int_unchecked::<u16>()
                        }
                    })?)
                    .into_dyn(),
                ),
                bits @ 17..=32 => AnyArray::U32(
                    Array1::from_vec(quantize(data, |x| {
                        let max = f64::from(u32::MAX >> (32 - bits));
                        let x = x.mul_add(scale_for_bits::<f64>(bits), 0.5).clamp(0.0, max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            x.to_int_unchecked::<u32>()
                        }
                    })?)
                    .into_dyn(),
                ),
                bits @ 33.. => AnyArray::U64(
                    Array1::from_vec(quantize(data, |x| {
                        // we need to use TwoFloat here to have sufficient precision
                        let max = TwoFloat::from(u64::MAX >> (64 - bits));
                        let x = (TwoFloat::from(x) * scale_for_bits::<f64>(bits)
                            + TwoFloat::from(0.5))
                        .max(TwoFloat::from(0.0))
                        .min(max);
                        #[allow(unsafe_code)]
                        // Safety: x is clamped beforehand
                        unsafe {
                            u64::try_from(x).unwrap_unchecked()
                        }
                    })?)
                    .into_dyn(),
                ),
            },
            (data, dtype) => {
                return Err(LinearQuantizeCodecError::MismatchedEncodeDType {
                    configured: dtype,
                    provided: data.dtype(),
                });
            }
        };

        Ok(encoded)
    }

    fn decode(&self, encoded: AnyCowArray) -> Result<AnyArray, Self::Error> {
        #[allow(clippy::option_if_let_else)]
        fn as_standard_order<T: Copy, S: Data<Elem = T>, D: Dimension>(
            array: &ArrayBase<S, D>,
        ) -> Cow<[T]> {
            if let Some(data) = array.as_slice() {
                Cow::Borrowed(data)
            } else {
                Cow::Owned(array.iter().copied().collect())
            }
        }

        if !matches!(encoded.shape(), [_]) {
            return Err(LinearQuantizeCodecError::EncodedDataNotOneDimensional {
                shape: encoded.shape().to_vec(),
            });
        }

        let decoded = match (&encoded, self.dtype) {
            (AnyCowArray::U8(encoded), LinearQuantizeDType::F32) => {
                AnyArray::F32(reconstruct(&as_standard_order(encoded), |x| {
                    f32::from(x) / scale_for_bits::<f32>(self.bits as u8)
                })?)
            }
            (AnyCowArray::U16(encoded), LinearQuantizeDType::F32) => {
                AnyArray::F32(reconstruct(&as_standard_order(encoded), |x| {
                    f32::from(x) / scale_for_bits::<f32>(self.bits as u8)
                })?)
            }
            (AnyCowArray::U32(encoded), LinearQuantizeDType::F32) => {
                AnyArray::F32(reconstruct(&as_standard_order(encoded), |x| {
                    // we need to use f64 here to have sufficient precision
                    let x = f64::from(x) / scale_for_bits::<f64>(self.bits as u8);
                    #[allow(clippy::cast_possible_truncation)]
                    let x = x as f32;
                    x
                })?)
            }
            (AnyCowArray::U64(encoded), LinearQuantizeDType::F32) => {
                AnyArray::F32(reconstruct(&as_standard_order(encoded), |x| {
                    // we need to use TwoFloat here to have sufficient precision
                    let x = TwoFloat::from(x) / scale_for_bits::<f64>(self.bits as u8);
                    f32::from(x)
                })?)
            }
            (AnyCowArray::U8(encoded), LinearQuantizeDType::F64) => {
                AnyArray::F64(reconstruct(&as_standard_order(encoded), |x| {
                    f64::from(x) / scale_for_bits::<f64>(self.bits as u8)
                })?)
            }
            (AnyCowArray::U16(encoded), LinearQuantizeDType::F64) => {
                AnyArray::F64(reconstruct(&as_standard_order(encoded), |x| {
                    f64::from(x) / scale_for_bits::<f64>(self.bits as u8)
                })?)
            }
            (AnyCowArray::U32(encoded), LinearQuantizeDType::F64) => {
                AnyArray::F64(reconstruct(&as_standard_order(encoded), |x| {
                    f64::from(x) / scale_for_bits::<f64>(self.bits as u8)
                })?)
            }
            (AnyCowArray::U64(encoded), LinearQuantizeDType::F64) => {
                AnyArray::F64(reconstruct(&as_standard_order(encoded), |x| {
                    // we need to use TwoFloat here to have sufficient precision
                    let x = TwoFloat::from(x) / scale_for_bits::<f64>(self.bits as u8);
                    f64::from(x)
                })?)
            }
            (encoded, _dtype) => {
                return Err(LinearQuantizeCodecError::InvalidEncodedDType {
                    dtype: encoded.dtype(),
                })
            }
        };

        Ok(decoded)
    }

    fn decode_into(
        &self,
        encoded: AnyArrayView,
        decoded: AnyArrayViewMut,
    ) -> Result<(), Self::Error> {
        fn as_standard_order<T: Copy, S: Data<Elem = T>, D: Dimension>(
            array: &ArrayBase<S, D>,
        ) -> Cow<[T]> {
            #[allow(clippy::option_if_let_else)]
            if let Some(data) = array.as_slice() {
                Cow::Borrowed(data)
            } else {
                Cow::Owned(array.iter().copied().collect())
            }
        }

        if !matches!(encoded.shape(), [_]) {
            return Err(LinearQuantizeCodecError::EncodedDataNotOneDimensional {
                shape: encoded.shape().to_vec(),
            });
        }

        match (decoded, self.dtype) {
            (AnyArrayViewMut::F32(decoded), LinearQuantizeDType::F32) => {
                match &encoded {
                    AnyArrayView::U8(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            f32::from(x) / scale_for_bits::<f32>(self.bits as u8)
                        })
                    }
                    AnyArrayView::U16(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            f32::from(x) / scale_for_bits::<f32>(self.bits as u8)
                        })
                    }
                    AnyArrayView::U32(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            // we need to use f64 here to have sufficient precision
                            let x = f64::from(x) / scale_for_bits::<f64>(self.bits as u8);
                            #[allow(clippy::cast_possible_truncation)]
                            let x = x as f32;
                            x
                        })
                    }
                    AnyArrayView::U64(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            // we need to use TwoFloat here to have sufficient precision
                            let x = TwoFloat::from(x) / scale_for_bits::<f64>(self.bits as u8);
                            f32::from(x)
                        })
                    }
                    encoded => {
                        return Err(LinearQuantizeCodecError::InvalidEncodedDType {
                            dtype: encoded.dtype(),
                        })
                    }
                }
            }
            (AnyArrayViewMut::F64(decoded), LinearQuantizeDType::F64) => {
                match &encoded {
                    AnyArrayView::U8(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            f64::from(x) / scale_for_bits::<f64>(self.bits as u8)
                        })
                    }
                    AnyArrayView::U16(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            f64::from(x) / scale_for_bits::<f64>(self.bits as u8)
                        })
                    }
                    AnyArrayView::U32(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            f64::from(x) / scale_for_bits::<f64>(self.bits as u8)
                        })
                    }
                    AnyArrayView::U64(encoded) => {
                        reconstruct_into(&as_standard_order(encoded), decoded, |x| {
                            // we need to use TwoFloat here to have sufficient precision
                            let x = TwoFloat::from(x) / scale_for_bits::<f64>(self.bits as u8);
                            f64::from(x)
                        })
                    }
                    encoded => {
                        return Err(LinearQuantizeCodecError::InvalidEncodedDType {
                            dtype: encoded.dtype(),
                        })
                    }
                }
            }
            (decoded, dtype) => {
                return Err(LinearQuantizeCodecError::MismatchedDecodeIntoDtype {
                    configured: dtype,
                    provided: decoded.dtype(),
                })
            }
        }?;

        Ok(())
    }
}

impl StaticCodec for LinearQuantizeCodec {
    const CODEC_ID: &'static str = "linear-quantize";

    type Config<'de> = Self;

    fn from_config(config: Self::Config<'_>) -> Self {
        config
    }

    fn get_config(&self) -> StaticCodecConfig<Self> {
        StaticCodecConfig::from(self)
    }
}

#[derive(Debug, Error)]
/// Errors that may occur when applying the [`LinearQuantizeCodec`].
pub enum LinearQuantizeCodecError {
    /// [`LinearQuantizeCodec`] cannot encode the provided dtype which differs
    /// from the configured dtype
    #[error("LinearQuantize cannot encode the provided dtype {provided} which differs from the configured dtype {configured}")]
    MismatchedEncodeDType {
        /// Dtype of the `configured` `dtype`
        configured: LinearQuantizeDType,
        /// Dtype of the `provided` array from which the data is to be encoded
        provided: AnyArrayDType,
    },
    /// [`LinearQuantizeCodec`] does not support non-finite (infinite or NaN) floating
    /// point data
    #[error("LinearQuantize does not support non-finite (infinite or NaN) floating point data")]
    NonFiniteData,
    /// [`LinearQuantizeCodec`] failed to encode the header
    #[error("LinearQuantize failed to encode the header")]
    HeaderEncodeFailed {
        /// Opaque source error
        source: LinearQuantizeHeaderError,
    },
    /// [`LinearQuantizeCodec`] can only decode one-dimensional arrays but
    /// received an array of a different shape
    #[error("LinearQuantize can only decode one-dimensional arrays but received an array of shape {shape:?}")]
    EncodedDataNotOneDimensional {
        /// The unexpected shape of the encoded array
        shape: Vec<usize>,
    },
    /// [`LinearQuantizeCodec`] failed to decode the header
    #[error("LinearQuantize failed to decode the header")]
    HeaderDecodeFailed {
        /// Opaque source error
        source: LinearQuantizeHeaderError,
    },
    /// [`LinearQuantizeCodec`] decoded an invalid array shape header which does
    /// not fit the decoded data
    #[error(
        "LinearQuantize decoded an invalid array shape header which does not fit the decoded data"
    )]
    DecodeInvalidShapeHeader {
        /// Source error
        #[from]
        source: ShapeError,
    },
    /// [`LinearQuantizeCodec`] cannot decode the provided dtype
    #[error("LinearQuantize cannot decode the provided dtype {dtype}")]
    InvalidEncodedDType {
        /// Dtype of the provided array from which the data is to be decoded
        dtype: AnyArrayDType,
    },
    /// [`LinearQuantizeCodec`] cannot decode the provided dtype which differs
    /// from the configured dtype
    #[error("LinearQuantize cannot decode the provided dtype {provided} which differs from the configured dtype {configured}")]
    MismatchedDecodeIntoDtype {
        /// Dtype of the `configured` `dtype`
        configured: LinearQuantizeDType,
        /// Dtype of the `provided` array into which the data is to be decoded
        provided: AnyArrayDType,
    },
    /// [`LinearQuantizeCodec`] cannot decode the decoded array into the provided
    /// array of a different shape
    #[error("LinearQuantize cannot decode the decoded array of shape {decoded:?} into the provided array of shape {provided:?}")]
    MismatchedDecodeIntoShape {
        /// Shape of the `decoded` data
        decoded: Vec<usize>,
        /// Shape of the `provided` array into which the data is to be decoded
        provided: Vec<usize>,
    },
}

#[derive(Debug, Error)]
#[error(transparent)]
/// Opaque error for when encoding or decoding the header fails
pub struct LinearQuantizeHeaderError(postcard::Error);

/// Linear-quantize the elements in the `data` array using the `quantize`
/// closure.
///
/// # Errors
///
/// Errors with
/// - [`LinearQuantizeCodecError::NonFiniteData`] if any data element is non-
///   finite (infinite or NaN)
/// - [`LinearQuantizeCodecError::HeaderEncodeFailed`] if encoding the header
///   failed
pub fn quantize<
    T: Float + ConstZero + ConstOne + Serialize,
    Q: Unsigned,
    S: Data<Elem = T>,
    D: Dimension,
>(
    data: &ArrayBase<S, D>,
    quantize: impl Fn(T) -> Q,
) -> Result<Vec<Q>, LinearQuantizeCodecError> {
    if !Zip::from(data).all(|x| x.is_finite()) {
        return Err(LinearQuantizeCodecError::NonFiniteData);
    }

    let (minimum, maximum) = data.first().map_or((T::ZERO, T::ONE), |first| {
        (
            Zip::from(data).fold(*first, |a, b| a.min(*b)),
            Zip::from(data).fold(*first, |a, b| a.max(*b)),
        )
    });

    let header = postcard::to_extend(
        &CompressionHeader {
            shape: Cow::Borrowed(data.shape()),
            minimum,
            maximum,
        },
        Vec::new(),
    )
    .map_err(|err| LinearQuantizeCodecError::HeaderEncodeFailed {
        source: LinearQuantizeHeaderError(err),
    })?;

    let mut encoded: Vec<Q> =
        vec![Q::ZERO; (header.len() + std::mem::size_of::<Q>() - 1) / std::mem::size_of::<Q>()];
    #[allow(unsafe_code)]
    // Safety: encoded is at least header.len() bytes long and properly aligned for Q
    unsafe {
        std::ptr::copy_nonoverlapping(header.as_ptr(), encoded.as_mut_ptr().cast(), header.len());
    }
    encoded.reserve(data.len());

    if maximum == minimum {
        encoded.resize(encoded.len() + data.len(), quantize(T::ZERO));
    } else {
        encoded.extend(
            data.iter()
                .map(|x| quantize((*x - minimum) / (maximum - minimum))),
        );
    }

    Ok(encoded)
}

/// Reconstruct the linear-quantized `encoded` array using the `floatify`
/// closure.
///
/// # Errors
///
/// Errors with
/// - [`LinearQuantizeCodecError::HeaderDecodeFailed`] if decoding the header
///   failed
pub fn reconstruct<T: Float + DeserializeOwned, Q: Unsigned>(
    encoded: &[Q],
    floatify: impl Fn(Q) -> T,
) -> Result<ArrayD<T>, LinearQuantizeCodecError> {
    #[allow(unsafe_code)]
    // Safety: data is data.len()*size_of::<Q> bytes long and properly aligned for Q
    let (header, remaining) = postcard::take_from_bytes::<CompressionHeader<T>>(unsafe {
        std::slice::from_raw_parts(encoded.as_ptr().cast(), std::mem::size_of_val(encoded))
    })
    .map_err(|err| LinearQuantizeCodecError::HeaderDecodeFailed {
        source: LinearQuantizeHeaderError(err),
    })?;

    let encoded = encoded
        .get(encoded.len() - (remaining.len() / std::mem::size_of::<Q>())..)
        .unwrap_or(&[]);

    let decoded = encoded
        .iter()
        .map(|x| header.minimum + (floatify(*x) * (header.maximum - header.minimum)))
        .map(|x| x.clamp(header.minimum, header.maximum))
        .collect();

    let decoded = Array::from_shape_vec(&*header.shape, decoded)?;

    Ok(decoded)
}

#[allow(clippy::needless_pass_by_value)]
/// Reconstruct the linear-quantized `encoded` array using the `floatify`
/// closure into the `decoded` array.
///
/// # Errors
///
/// Errors with
/// - [`LinearQuantizeCodecError::HeaderDecodeFailed`] if decoding the header
///   failed
/// - [`LinearQuantizeCodecError::MismatchedDecodeIntoShape`] if the `decoded`
///   array is of the wrong shape
pub fn reconstruct_into<T: Float + DeserializeOwned, Q: Unsigned>(
    encoded: &[Q],
    mut decoded: ArrayViewMutD<T>,
    floatify: impl Fn(Q) -> T,
) -> Result<(), LinearQuantizeCodecError> {
    #[allow(unsafe_code)]
    // Safety: data is data.len()*size_of::<Q> bytes long and properly aligned for Q
    let (header, remaining) = postcard::take_from_bytes::<CompressionHeader<T>>(unsafe {
        std::slice::from_raw_parts(encoded.as_ptr().cast(), std::mem::size_of_val(encoded))
    })
    .map_err(|err| LinearQuantizeCodecError::HeaderDecodeFailed {
        source: LinearQuantizeHeaderError(err),
    })?;

    let encoded = encoded
        .get(encoded.len() - (remaining.len() / std::mem::size_of::<Q>())..)
        .unwrap_or(&[]);

    if decoded.shape() != &*header.shape {
        return Err(LinearQuantizeCodecError::MismatchedDecodeIntoShape {
            decoded: header.shape.into_owned(),
            provided: decoded.shape().to_vec(),
        });
    }

    // iteration must occur in synchronised (standard) order
    for (e, d) in encoded.iter().zip(decoded.iter_mut()) {
        *d = (header.minimum + (floatify(*e) * (header.maximum - header.minimum)))
            .clamp(header.minimum, header.maximum);
    }

    Ok(())
}

/// Returns `exp2(bits) - 1.0`
fn scale_for_bits<T: Float + From<u8> + ConstOne>(bits: u8) -> T {
    <T as From<u8>>::from(bits).exp2() - T::ONE
}

/// Unsigned binary types.
pub trait Unsigned: Copy {
    /// `0x0`
    const ZERO: Self;
}

impl Unsigned for u8 {
    const ZERO: Self = 0;
}

impl Unsigned for u16 {
    const ZERO: Self = 0;
}

impl Unsigned for u32 {
    const ZERO: Self = 0;
}

impl Unsigned for u64 {
    const ZERO: Self = 0;
}

#[derive(Serialize, Deserialize)]
struct CompressionHeader<'a, T> {
    #[serde(borrow)]
    shape: Cow<'a, [usize]>,
    minimum: T,
    maximum: T,
}

#[cfg(test)]
mod tests {
    use ndarray::CowArray;

    use super::*;

    #[test]
    fn exact_roundtrip_f32_from() -> Result<(), LinearQuantizeCodecError> {
        for bits in 1..=16 {
            let codec = LinearQuantizeCodec {
                dtype: LinearQuantizeDType::F32,
                #[allow(unsafe_code)]
                bits: unsafe { std::mem::transmute::<u8, LinearQuantizeBins>(bits) },
            };

            let mut data: Vec<f32> = (0..(u16::MAX >> (16 - bits)))
                .step_by(1 << (bits.max(8) - 8))
                .map(f32::from)
                .collect();
            data.push(f32::from(u16::MAX >> (16 - bits)));

            let encoded = codec.encode(AnyCowArray::F32(CowArray::from(&data).into_dyn()))?;
            let decoded = codec.decode(encoded.cow())?;

            let AnyArray::F32(decoded) = decoded else {
                return Err(LinearQuantizeCodecError::MismatchedDecodeIntoDtype {
                    configured: LinearQuantizeDType::F32,
                    provided: decoded.dtype(),
                });
            };

            for (o, d) in data.iter().zip(decoded.iter()) {
                assert_eq!(o.to_bits(), d.to_bits());
            }
        }

        Ok(())
    }

    #[test]
    fn exact_roundtrip_f32_as() -> Result<(), LinearQuantizeCodecError> {
        for bits in 1..=64 {
            let codec = LinearQuantizeCodec {
                dtype: LinearQuantizeDType::F32,
                #[allow(unsafe_code)]
                bits: unsafe { std::mem::transmute::<u8, LinearQuantizeBins>(bits) },
            };

            #[allow(clippy::cast_precision_loss)]
            let mut data: Vec<f32> = (0..(u64::MAX >> (64 - bits)))
                .step_by(1 << (bits.max(8) - 8))
                .map(|x| x as f32)
                .collect();
            #[allow(clippy::cast_precision_loss)]
            data.push((u64::MAX >> (64 - bits)) as f32);

            let encoded = codec.encode(AnyCowArray::F32(CowArray::from(&data).into_dyn()))?;
            let decoded = codec.decode(encoded.cow())?;

            let AnyArray::F32(decoded) = decoded else {
                return Err(LinearQuantizeCodecError::MismatchedDecodeIntoDtype {
                    configured: LinearQuantizeDType::F32,
                    provided: decoded.dtype(),
                });
            };

            for (o, d) in data.iter().zip(decoded.iter()) {
                assert_eq!(o.to_bits(), d.to_bits());
            }
        }

        Ok(())
    }

    #[test]
    fn exact_roundtrip_f64_from() -> Result<(), LinearQuantizeCodecError> {
        for bits in 1..=32 {
            let codec = LinearQuantizeCodec {
                dtype: LinearQuantizeDType::F64,
                #[allow(unsafe_code)]
                bits: unsafe { std::mem::transmute::<u8, LinearQuantizeBins>(bits) },
            };

            let mut data: Vec<f64> = (0..(u32::MAX >> (32 - bits)))
                .step_by(1 << (bits.max(8) - 8))
                .map(f64::from)
                .collect();
            data.push(f64::from(u32::MAX >> (32 - bits)));

            let encoded = codec.encode(AnyCowArray::F64(CowArray::from(&data).into_dyn()))?;
            let decoded = codec.decode(encoded.cow())?;

            let AnyArray::F64(decoded) = decoded else {
                return Err(LinearQuantizeCodecError::MismatchedDecodeIntoDtype {
                    configured: LinearQuantizeDType::F64,
                    provided: decoded.dtype(),
                });
            };

            for (o, d) in data.iter().zip(decoded.iter()) {
                assert_eq!(o.to_bits(), d.to_bits());
            }
        }

        Ok(())
    }

    #[test]
    fn exact_roundtrip_f64_as() -> Result<(), LinearQuantizeCodecError> {
        for bits in 1..=64 {
            let codec = LinearQuantizeCodec {
                dtype: LinearQuantizeDType::F64,
                #[allow(unsafe_code)]
                bits: unsafe { std::mem::transmute::<u8, LinearQuantizeBins>(bits) },
            };

            #[allow(clippy::cast_precision_loss)]
            let mut data: Vec<f64> = (0..(u64::MAX >> (64 - bits)))
                .step_by(1 << (bits.max(8) - 8))
                .map(|x| x as f64)
                .collect();
            #[allow(clippy::cast_precision_loss)]
            data.push((u64::MAX >> (64 - bits)) as f64);

            let encoded = codec.encode(AnyCowArray::F64(CowArray::from(&data).into_dyn()))?;
            let decoded = codec.decode(encoded.cow())?;

            let AnyArray::F64(decoded) = decoded else {
                return Err(LinearQuantizeCodecError::MismatchedDecodeIntoDtype {
                    configured: LinearQuantizeDType::F64,
                    provided: decoded.dtype(),
                });
            };

            for (o, d) in data.iter().zip(decoded.iter()) {
                assert_eq!(o.to_bits(), d.to_bits());
            }
        }

        Ok(())
    }

    #[test]
    fn const_data_roundtrip() -> Result<(), LinearQuantizeCodecError> {
        for bits in 1..=64 {
            let data = [42.0, 42.0, 42.0, 42.0];

            let codec = LinearQuantizeCodec {
                dtype: LinearQuantizeDType::F64,
                #[allow(unsafe_code)]
                bits: unsafe { std::mem::transmute::<u8, LinearQuantizeBins>(bits) },
            };

            let encoded = codec.encode(AnyCowArray::F64(CowArray::from(&data).into_dyn()))?;
            let decoded = codec.decode(encoded.cow())?;

            let AnyArray::F64(decoded) = decoded else {
                return Err(LinearQuantizeCodecError::MismatchedDecodeIntoDtype {
                    configured: LinearQuantizeDType::F64,
                    provided: decoded.dtype(),
                });
            };

            for (o, d) in data.iter().zip(decoded.iter()) {
                assert_eq!(o.to_bits(), d.to_bits());
            }
        }

        Ok(())
    }
}