1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use std::marker::PhantomData;

use necsim_core::{
    cogs::{MathsCore, PrimeableRng},
    reporter::Reporter,
    simulation::SimulationBuilder,
};
use necsim_core_bond::NonNegativeF64;

use necsim_impls_no_std::{
    cogs::{
        active_lineage_sampler::independent::event_time_sampler::exp::ExpEventTimeSampler,
        coalescence_sampler::independent::IndependentCoalescenceSampler,
        emigration_exit::never::NeverEmigrationExit,
        event_sampler::independent::IndependentEventSampler,
        immigration_entry::never::NeverImmigrationEntry,
        lineage_store::independent::IndependentLineageStore,
        origin_sampler::{
            decomposition::DecompositionOriginSampler, pre_sampler::OriginPreSampler,
        },
    },
    parallelisation::Status,
};
use necsim_partitioning_core::LocalPartition;

use rustcoalescence_algorithms::result::SimulationOutcome;
use rustcoalescence_scenarios::{Scenario, ScenarioCogs};

use rustcoalescence_algorithms_cuda_gpu_kernel::simulate;

use rust_cuda::{
    deps::rustacuda::{
        function::{BlockSize, GridSize},
        prelude::{Stream, StreamFlags},
    },
    host::CudaDropWrapper,
    kernel::{CompiledKernelPtx, LaunchConfig, Launcher, TypedPtxKernel},
    lend::RustToCuda,
};

use crate::{
    arguments::{
        CudaArguments, IsolatedParallelismMode, MonolithicParallelismMode, ParallelismMode,
    },
    cuda::with_initialised_cuda,
    error::CudaError,
    initialiser::CudaLineageStoreSampleInitialiser,
    parallelisation,
};

#[allow(clippy::too_many_lines)]
pub fn initialise_and_simulate<
    'p,
    M: MathsCore + Sync,
    G: PrimeableRng<M> + RustToCuda + Sync,
    O: Scenario<M, G>,
    R: Reporter,
    P: LocalPartition<'p, R>,
    I: Iterator<Item = u64>,
    L: CudaLineageStoreSampleInitialiser<M, G, O, Error>,
    Error: From<CudaError>,
    Ptx: CompiledKernelPtx<
        simulate<
            M,
            O::Habitat,
            G,
            IndependentLineageStore<M, O::Habitat>,
            NeverEmigrationExit,
            L::DispersalSampler,
            IndependentCoalescenceSampler<M, O::Habitat>,
            O::TurnoverRate,
            O::SpeciationProbability,
            IndependentEventSampler<
                M,
                O::Habitat,
                G,
                NeverEmigrationExit,
                L::DispersalSampler,
                O::TurnoverRate,
                O::SpeciationProbability,
            >,
            NeverImmigrationEntry,
            L::ActiveLineageSampler<NeverEmigrationExit, ExpEventTimeSampler>,
            R::ReportSpeciation,
            R::ReportDispersal,
        >,
    >,
>(
    args: &CudaArguments,
    rng: G,
    scenario: ScenarioCogs<M, G, O>,
    pre_sampler: OriginPreSampler<M, I>,
    pause_before: Option<NonNegativeF64>,
    local_partition: &mut P,
    lineage_store_sampler_initialiser: L,
) -> Result<SimulationOutcome<M, G>, Error>
where
    O::Habitat: RustToCuda + Sync,
    O::DispersalSampler: RustToCuda + Sync,
    O::TurnoverRate: RustToCuda + Sync,
    O::SpeciationProbability: RustToCuda + Sync,
{
    let ScenarioCogs {
        habitat,
        dispersal_sampler,
        turnover_rate,
        speciation_probability,
        origin_sampler_auxiliary,
        decomposition_auxiliary,
        ..
    } = scenario;
    let coalescence_sampler = IndependentCoalescenceSampler::default();
    let event_sampler = IndependentEventSampler::default();

    let (lineage_store, dispersal_sampler, active_lineage_sampler, lineages, passthrough) =
        match args.parallelism_mode {
            // Apply no lineage origin partitioning in the `Monolithic` mode
            ParallelismMode::Monolithic(..) => lineage_store_sampler_initialiser.init(
                O::sample_habitat(&habitat, pre_sampler, origin_sampler_auxiliary),
                dispersal_sampler,
                ExpEventTimeSampler::new(args.delta_t),
            )?,
            // Apply lineage origin partitioning in the `IsolatedIndividuals` mode
            ParallelismMode::IsolatedIndividuals(IsolatedParallelismMode { partition, .. }) => {
                lineage_store_sampler_initialiser.init(
                    O::sample_habitat(
                        &habitat,
                        pre_sampler.partition(partition),
                        origin_sampler_auxiliary,
                    ),
                    dispersal_sampler,
                    ExpEventTimeSampler::new(args.delta_t),
                )?
            },
            // Apply lineage origin partitioning in the `IsolatedLandscape` mode
            ParallelismMode::IsolatedLandscape(IsolatedParallelismMode { partition, .. }) => {
                lineage_store_sampler_initialiser.init(
                    DecompositionOriginSampler::new(
                        O::sample_habitat(&habitat, pre_sampler, origin_sampler_auxiliary),
                        &O::decompose(&habitat, partition, decomposition_auxiliary),
                    ),
                    dispersal_sampler,
                    ExpEventTimeSampler::new(args.delta_t),
                )?
            },
        };

    let emigration_exit = NeverEmigrationExit::default();
    let immigration_entry = NeverImmigrationEntry::default();

    let mut simulation = SimulationBuilder {
        maths: PhantomData::<M>,
        habitat,
        lineage_store,
        dispersal_sampler,
        coalescence_sampler,
        turnover_rate,
        speciation_probability,
        emigration_exit,
        event_sampler,
        active_lineage_sampler,
        rng,
        immigration_entry,
    }
    .build();

    // Note: It seems to be more performant to spawn smaller blocks
    let block_size = BlockSize::x(args.block_size.get());
    let grid_size = GridSize::x(args.grid_size.get());

    let event_slice = match args.parallelism_mode {
        ParallelismMode::Monolithic(MonolithicParallelismMode { event_slice })
        | ParallelismMode::IsolatedIndividuals(IsolatedParallelismMode { event_slice, .. })
        | ParallelismMode::IsolatedLandscape(IsolatedParallelismMode { event_slice, .. }) => {
            event_slice
        },
    };

    let (mut status, time, steps, lineages) = with_initialised_cuda(args.device, || {
        let mut stream = CudaDropWrapper::from(Stream::new(StreamFlags::NON_BLOCKING, None)?);

        let mut kernel = TypedPtxKernel::new::<Ptx>(Some(Box::new(|kernel| {
            crate::info::print_kernel_function_attributes("simulate", kernel);
            Ok(())
        })));

        let config = LaunchConfig {
            grid: grid_size,
            block: block_size,
            ptx_jit: args.ptx_jit,
        };

        rust_cuda::host::Stream::with(&mut stream, |stream| {
            let launcher = Launcher {
                stream,
                kernel: &mut kernel,
                config,
            };

            parallelisation::monolithic::simulate(
                &mut simulation,
                launcher,
                (args.dedup_cache, args.step_slice),
                lineages,
                event_slice,
                pause_before,
                local_partition,
            )
        })
    })
    .map_err(CudaError::from)?;

    if !passthrough.is_empty() {
        status = Status::Paused;
    }

    match status {
        Status::Done => Ok(SimulationOutcome::Done { time, steps }),
        Status::Paused => Ok(SimulationOutcome::Paused {
            time,
            steps,
            lineages: lineages.into_iter().chain(passthrough).collect(),
            rng: simulation.rng_mut().clone(),
            marker: PhantomData::<M>,
        }),
    }
}